Publications
2-block Springer fibers: convolution algebras and coherent sheaves. Comment. Math. Helv., 87, 477–520. doi:10.4171/CMH/261
. (2012). Canonical bases and higher representation theory. Compos. Math., 151, 121–166. doi:10.1112/S0010437X1400760X
. (2015). On category O for affine Grassmannian slices and categorified tensor products. Proceedings of the London Mathematical Society, 119, 1179–1233. Wiley Online Library.
. (2019). Coherent sheaves and quantum Coulomb branches I: tilting bundles from integrable systems. arXiv preprint arXiv:1905.04623.
. (2019). Comparison of canonical bases for Schur and universal enveloping algebras. Transform. Groups, 22, 869–883. doi:10.1007/s00031-016-9409-2
. (2017). Cramped subgroups and generalized Harish-Chandra modules. Proc. Amer. Math. Soc., 136, 3809–3814. doi:10.1090/S0002-9939-08-09421-5
. (2008). Current algebras and categorified quantum groups. Journal of the London Mathematical Society, 95, 248–276. doi:10.1112/jlms.12001
. (2017). Cyclicity for categorified quantum groups. J. Algebra, 452, 118–132. doi:10.1016/j.jalgebra.2015.11.041
. (2016). On the definition of quantum Heisenberg category. Algebra & Number Theory, 14, 275–321. Mathematical Sciences Publishers.
. (2020). The degenerate Heisenberg category and its Grothendieck ring. arXiv preprint arXiv:1812.03255.
. (2018). A Deodhar-type stratification on the double flag variety. Transform. Groups, 12, 769–785. doi:10.1007/s00031-007-0061-8
. (2007). Foundations of Frobenius Heisenberg categories. Journal of Algebra. Academic Press.
. (2021). . (2010).
Gelfand-Tsetlin modules: canonicity and calculations. arXiv preprint arXiv:2011.06029.
. (2020). Gelfand-Tsetlin modules in the Coulomb context. arXiv preprint arXiv:1904.05415.
. (2019). On generalized category O for a quiver variety. Mathematische Annalen, 368, 483–536. Jun. doi:10.1007/s00208-016-1438-6
. (2017). A geometric construction of colored HOMFLYPT homology. Geometry and Topology, 21(5), 2557–2600. Retrieved from http://msp.org/gt/2017/21-5/p01.xhtml gt-v21-n5-p01-s.pdf
. (2017). A geometric model for Hochschild homology of Soergel bimodules. Geom. Topol., 12, 1243–1263. doi:10.2140/gt.2008.12.1243
. (2008). Geometry and categorification. In Categorification in geometry, topology, and physics (Vol. 684, pp. 1–22). Amer. Math. Soc., Providence, RI.
. (2017). . (2011).