Batch-mode active learning for regression and its application to the valuation of large variable annuity portfolios
Supervised learning algorithms require a sufficient amount of labeled data to construct an accurate predictive model. In practice, collecting labeled data may be extremely time-consuming while unlabeled data can be easily accessed. In a situation where labeled data are insufficient for a prediction model to perform well and the budget for an additional data collection is limited, it is important to effectively select objects to be labeled based on whether they contribute to a great improvement in the model's performance. In this talk, I will focus on the idea of active learning that aims to train an accurate prediction model with minimum labeling cost. In particular, I will present batch-mode active learning for regression problems. Based on random forest, I will propose two effective random sampling algorithms that consider the prediction ambiguities and diversities of unlabeled objects as measures of their informativeness. Empirical results on an insurance data set demonstrate the effectiveness of the proposed approaches in valuing large variable annuity portfolios (which is a practical problem in the actuarial field). Additionally, comparisons with the existing framework that relies on a sequential combination of unsupervised and supervised learning algorithms are also investigated.