Sufficient Dimension Reduction for Populations with Structured Heterogeneity
Risk modeling has become a crucial component in the effective delivery of health care. A key challenge in building effective risk models is accounting for patient heterogeneity among the diverse populations present in health systems. Incorporating heterogeneity based on the presence of various comorbidities into risk models is crucial for the development of tailored care strategies, as it can provide patient-centered information and can result in more accurate risk prediction. Yet, in the presence of high dimensional covariates, accounting for this type of heterogeneity can exacerbate estimation difficulties even with large sample sizes. Towards this aim, we propose a flexible and interpretable risk modeling approach based on semiparametric sufficient dimension reduction. The approach accounts for patient heterogeneity, borrows strength in estimation across related subpopulations to improve both estimation efficiency and interpretability, and can serve as a useful exploratory tool or as a powerful predictive model. In simulated examples, we show that our approach can improve estimation performance in the presence of heterogeneity and is quite robust to deviations from its key underlying assumption. We demonstrate the utility of our approach in the prediction of hospital admission risk for a large health system when tested on further follow-up data.