Assessing the Impacts of Mutations to the Structure of COVID-19 Spike Protein via Sequential Monte Carlo
Proteins play a key role in facilitating the infectiousness of the 2019 novel coronavirus. A specific spike protein enables this virus to bind to human cells, and a thorough understanding of its 3-dimensional structure is therefore critical for developing effective therapeutic interventions. However, its structure may continue to evolve over time as a result of mutations. We take a data science perspective to study the potential structural impacts due to ongoing mutations in its amino acid sequence. To do so, we identify a key segment of the protein and apply a sequential Monte Carlo sampling method to detect possible changes to the space of low-energy conformations for different amino acid sequences. Such computational approaches can further our understanding of this important protein structure and complement laboratory efforts.
Please Note: This talk will be given through Microsoft Teams. To join please click here: Student Seminar by Samuel Wong