Wednesday, March 10, 2021 11:00 am
-
12:00 pm
EST (GMT -05:00)
Probability seminar series Duncan Dauvergne |
Learning from the directed landscape
The directed landscape is a random `directed metric' on the spacetime plane that arises as the scaling limit of integrable models of last passage percolation. It is expected to be the universal scaling limit for all models in the KPZ universality class for random growth. In this talk, I will describe its construction in terms of the Airy line ensemble, give an extension of this construction for optimal length disjoint paths in the directed landscape, and show how these constructions reveal surprising Brownian structures in the directed landscape. Based on joint work with J. Ortmann, B. Virag, and L. Zhang.