As technology advances, there is often an expectation of using it to make life easier. There is a strong push towards automating everyday activities for the purposes of saving time, improving efficiency or added safety. This is especially evident in the automotive industry, where the journey towards autonomous vehicles has seen companies create self-driving vehicles and consider the reality of driverless roadways. The Motion Research Group at the University of Waterloo’s Centre for Automotive Research (WatCAR) has been making significant contributions to the body of research around autonomous vehicles by working on a project related to self-driving vehicles, led by Professors Krzysztof Czarnecki and Steven Waslander.
The project, known as Autonomoose, is an autonomous drive-by-wire vehicle project that operates within WatCAR. Its objectives include improved self-driving in extreme weather conditions and during emergency maneuvers to avoid obstacles. “Our team has many researchers working on autonomous cars and we wanted a real-world vehicle platform on which to test new research theories and algorithms,” Czarnecki said. “We are working on the future of automotive transport, and we now have a state-of-the-art vehicle platform on which to test the real-world performance of our theories and controllers.”
Czarnecki and Waslander have been working on the project for the past two years and oversee the planning and navigation research for the project. They recently invited John McPhee, a Canada Research Chair and Professor of Systems Design Engineering at the University of Waterloo, to improve the motion controller for the vehicle and to oversee the dynamics and control aspects of the project. The research team selected a 2015 Lincoln MKZ Hybrid as the vehicle platform, and used Maplesoft’s Maple and MapleSim to support their research. They outfitted the car with the sensors and actuators required for implementation as an autonomous vehicle. “The Lincoln MKZ is the vehicle preferred by AutonomouStuff, the company that converted the MKZ to a drive-by-wire vehicle,” McPhee said. “We could then add our own sensors – Lidar, cameras, etc. – and control systems to convert the vehicle to be fully autonomous.” [Read more]