Monday, September 22, 2014 — 2:00 PM EDT

Candidate

Yao Chen

Title

More Than Error Correction: Cryptography from Codes

Supervisor

Guang Gong

Abstract

The first code-based cryptosystem, McEliece, was invented in the very early development of public-key cryptography, yet code-based cryptosystems received little attention for decades due to their relatively large key-sizes. But recently they are re-discovered for their potentials to provide efficient post-quantum cryptographic tools and homomorphic encryption schemes, and the development of large storage and fast Internet have made these schemes closer to practice than ever.

Through our review of the revolution of code-based cryptography, we will demonstrate the usage of codes in cryptographic applications. We will follow the path of the development, from the design, analysis, and implementation of McEliece cryptosystem and the quantum attack resistance to the latest fully homomorphic encryption scheme based on Learning with Errors, a code-related problem, designed by Brakerski et al. We will also cover algebraic manipulation detection codes, a newly proposed extension of error-correcting codes and a lightweight alternative to MACs as an authentication component embedded in security protocols.

Location 
EIT building
Room 3142

,

S M T W T F S
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
  1. 2019 (231)
    1. December (1)
    2. November (2)
    3. October (13)
    4. September (26)
    5. August (26)
    6. July (40)
    7. June (24)
    8. May (23)
    9. April (35)
    10. March (25)
    11. February (9)
    12. January (10)
  2. 2018 (150)
    1. December (13)
    2. November (25)
    3. October (12)
    4. September (13)
    5. August (7)
    6. July (23)
    7. June (9)
    8. May (6)
    9. April (9)
    10. March (16)
    11. February (10)
    12. January (7)
  3. 2017 (212)
  4. 2016 (242)
  5. 2015 (242)
  6. 2014 (268)
  7. 2013 (192)
  8. 2012 (31)