PhD Defence Notice - Mohammad Khaled AlsharmanExport this event to calendar

Friday, August 5, 2022 — 1:30 PM EDT

Candidate: Mohammad Khaled Alsharman
Title: Towards Learning Feasible Hierarchical Decision-Making Policies in Urban Autonomous Driving
Date: August 5, 2022
Time: 1:30 PM
Place: REMOTE ATTENDANCE
Supervisor(s): Rayside, Derek - Melek, William (ME)

Abstract:
Modern learning-based algorithms, powered by advanced deep structured neural nets, have multifacetedly facilitated automated driving platforms, spanning from scene characterization and perception to low-level control and state estimation schemes. Nonetheless, urban autonomous driving is regarded as a challenging application for machine learning (ML) and artificial intelligence (AI) since the learnt driving policies must handle complex multi-agent driving scenarios with indeterministic intentions of road participants. In the case of unsignalized intersections, automating the decision-making process at these safety-critical environments entails comprehending numerous layers of abstractions associated with learning robust driving behaviors to allow the vehicle to drive safely and efficiently.

Based on our in-depth investigation, we discern that an efficient, yet safe, decision-making scheme for navigating real-world unsignalized intersections does not exist yet. The state-of-the-art schemes lacked practicality to handle real-life complex scenarios as they utilize Low-fidelity vehicle dynamic models which makes them incapable of simulating the real dynamic motion in real-life driving applications. In addition, the conservative behavior of autonomous vehicles, which often overreact to threats which have low likelihood, degrades the overall driving quality and jeopardizes safety.  Hence, enhancing driving behavior is essential to attain agile, yet safe, traversing maneuvers in such multi-agent environments. Therefore, the main goal of conducting this PhD research is to develop high-fidelity learning-based frameworks to enhance the autonomous decision-making process at these safety-critical environments.

In this PhD research, we focus on three correlated and complementary research challenges. In our first research challenge, we conduct an in-depth and comprehensive survey on the state-of-the-art learning-based decision-making schemes with the objective of identifying the main shortcomings and potential research avenues. Based on the research directions concluded, we propose, in Problem II and Problem III, novel learning-based frameworks with the objective of enhancing safety and efficiency at different decision-making levels. In Problem II, we develop a novel sensorless state estimation for a safety-oriented cyber-physical system in urban driving using deep learning. A Deep Neural scheme is developed and trained using deep-learning training techniques to obtain an accurate state estimates for a safety-critical cyber-physical system. In Problem III, we propose a novel hierarchical reinforcement learning-based decision-making architecture for learning left-turn policies at unsignalized intersections with feasibility guarantees. The proposed technique is comprised of two layers; a high-level learning-based behavioral planning layer which adopts soft actor-critic principles to learn high-level, non-conservative yet safe, driving behaviors, and a low-level Model Predictive Control (MPC) framework to ensure feasibility of the two-dimensional left-turn maneuver. The high-level layer generates reference signals of velocity and yaw angle for the ego vehicle considering safety and collision avoidance with the intersection vehicles, whereas the low-level planning layer solves an optimization problem to track these reference commands taking into account several vehicle dynamic constraints and ride comfort.

S M T W T F S
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
  1. 2022 (91)
    1. August (21)
    2. July (15)
    3. June (3)
    4. May (6)
    5. April (9)
    6. March (16)
    7. February (10)
    8. January (11)
  2. 2021 (131)
    1. December (11)
    2. November (18)
    3. October (10)
    4. September (4)
    5. August (12)
    6. July (4)
    7. June (5)
    8. May (10)
    9. April (25)
    10. March (14)
    11. February (10)
    12. January (9)
  3. 2020 (246)
  4. 2019 (282)
  5. 2018 (150)
  6. 2017 (212)
  7. 2016 (242)
  8. 2015 (242)
  9. 2014 (268)
  10. 2013 (190)
  11. 2012 (31)