Future graduate students

Monday, February 8, 2016 1:00 pm - 1:00 pm EST (GMT -05:00)

Seminar: Dorian Gangloff

Nanocontacts atom-by-atom with a friction emulator

Dorian Gangloff, Massachusetts Institute of Technology

Friction is the basic, ubiquitous mechanical interaction between two surfaces that results in resistance to motion and energy dissipation. To test long-standing atomistic models of friction processes at the nanoscale, we implemented a synthetic nanofriction interface using laser cooled ions subject to the periodic potential of an optical standing wave.

Monday, February 29, 2016 11:00 am - 11:00 am EST (GMT -05:00)

Seminar: K. Rajibul Islam

Measuring Entanglement Entropy in a Many-body System

K. Rajibul Islam, MIT-Harvard Center for Ultracold Atoms

Entanglement, perhaps the most counter-intuitive feature of quantum mechanics, describes non-local correlations between quantum objects. In recent years, entanglement has emerged as a central concept in our understanding of quantum many-body physics. It allows us to characterize phases of quantum matter that cannot be distinguished by broken symmetries, such as topological states.

Thursday, January 28, 2016 10:00 am - 10:00 am EST (GMT -05:00)

Seminar: Hakop Pashayan

Estimating outcome probabilities of quantum circuits using quasiprobabilities

Hakop Pashayan, The University of Sydney

We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation.

Friday, February 12, 2016 11:00 am - 11:00 am EST (GMT -05:00)

Seminar: Boris Braverman

Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

Boris Braverman, Massachusetts Institute of Technology

State of the art optical lattice atomic clocks have reached a relative
inaccuracy level of order $10^{-18}$, making them the most stable time
references in existence.

Tuesday, January 26, 2016 1:30 pm - 2:30 pm EST (GMT -05:00)

Seminar: Shun Kawakami

Security of differential quadrature phase shift quantum key distribution

Shun Kawakami, University of Tokyo

One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer.

A team lead by researchers from the Institute for Quantum Computing and the Department of Physics and Astronomy at the University of Waterloo has successfully detected the presence of single photons while preserving their quantum states.

Tuesday, February 16, 2016 2:30 pm - 2:30 pm EST (GMT -05:00)

Seminar: William Paul

Toward single atom qubits on a surface: Pump-probe spectroscopy and electrically-driven spin resonance

William Paul, IBM Research

Single Fe atoms placed on a thin MgO film have exceptional magnetic properties: Their spin relaxation lifetime can extend to many milliseconds, and their quantum state can be coherently manipulated by RF electric fields. In this talk, we will discuss a scanning tunneling microscopy (STM) investigation of the dynamics of spin-relaxation and the electric-field-driven spin resonance of individual Fe atoms on a MgO/Ag(001) surface.

Monday, January 4, 2016 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Shalev Ben-David

Separations in query complexity using cheat sheets

Shalev Ben-David, Massachusetts Institute of Technology (MIT)

We show a power 2.5 separation between bounded-error randomized and quantum query complexity for a total Boolean function, refuting the widely believed conjecture that the best such separation could only be quadratic (from Grover's algorithm). We also present a total function with a power 4 separation between quantum query complexity and approximate polynomial degree, showing severe limitations on the power of the polynomial method.

Wednesday, December 16, 2015 1:00 pm - 1:00 pm EST (GMT -05:00)

Seminar: Edward Chen

Nitrogen-vacancy (NV) centers in diamond nanophotonic structures for quantum networking

Edward Chen, Massachusetts Institute of Technology

The exceptional optical and spin properties of the negatively charged nitrogen-vacancy (NV) center in diamond have led to a wide range of hallmark demonstrations ranging from super-resolution imaging to quantum entanglement, teleportation, and sensing. The solid-state environment of the NV allows us to engineer nano-structures that can enhance the properties of the NV and improve the readout and initialization fidelities of the spin.

Monday, December 14, 2015 12:00 pm - 12:00 pm EST (GMT -05:00)

Seminar: Xingshan Cui

Quantum Max-flow/Min-cut

Xingshan Cui, University of California, Santa Barbara

The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating a tensor to each node in an integral flow network, we can also interpret it as a tensor network, and more specifically, as a linear map.