Critical Phase and Spin Sharpening in SU(2)-Symmetric Monitored Quantum Circuits
Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.
Add event to calendar