Quantum Optomechanics Tutorial

Thursday, July 4, 2024 10:00 am - 12:00 pm EDT (GMT -04:00)

Professor Brad Hauer, Institute for Quantum Computing

Join new IQC faculty member Professor Brad Hauer for a tutorial on quantum optomechanics and a preview of new research directions at IQC. This tutorial is designed for the USEQIP program to be accessible to advanced undergraduates, and all IQC members are welcome (no registration required).

Cavity optomechanics, which studies the interplay between confined electromagnetic fields and mechanical motion, has seen a flurry of activity over the past two decades. In particular, optomechanical devices have had great success in preparing, manipulating, and observing quantum states of motion in nanoscale mechanical resonators. With applications in quantum information and quantum sensing on the horizon, cavity optomechanical devices remain an exciting prospect for real-world quantum technologies, as well as probes of important physical quantities on both microscopic and cosmological scales.

In my tutorial, I will provide a brief overview of cavity optomechanics, describing both the theoretical fundamentals and physical implementations. Following this introduction, I will detail a number of recent experiments realizing quantum effects in mesoscale mechanical resonators, including ground state cooling and entanglement of their motion. I will also discuss how cavity optomechanics is being used to further our understanding of the universe through next-generation dark matter and gravity wave detectors. Finally, I will briefly discuss my own research studying newly developed mm-wave optomechanical circuits and how I plan to use these devices to continue advancing the field.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo