Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, June 10, 2015 4:00 pm - 5:00 pm EDT (GMT -04:00)

Aleksander Kubica: Unfolding the color code

Aleksander Kubica, California Institute of Technology

The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. In the talk, I will introduce these two models and show their equivalence in d dimensions. I will describe codes with or without boundaries, and explain what insights one gets in the former case by looking at the condensation of anyonic excitations on the boundaries. I will conclude with a recipe of how one can implement fault-tolerantly a logical non-Pauli gate in the toric code in d dimensions.

Monday, June 15, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Mario Berta: Quantum Coding with Finite Resources

Mario Berta, California Institute of Technology

The quantum capacity of a memoryless channel is often used as a single figure of merit to characterize its ability to transmit quantum information coherently. The capacity determines the maximal rate at which we can code reliably over asymptotically many uses of the channel. We argue that this asymptotic treatment is insufficient to the point of being irrelevant in the quantum setting where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder.

Marzio Pozzuoli, RuggedCom

Abstract:
In 2001 RuggedCom was a fledging startup. A decade later it was bought by Siemens for nearly half a billion dollars. Mr. Pozzuoli, its founder, will discuss its path to success and the role played in that success by the Canadian experience and the strategies outlined in Geoffrey Moore’s iconic book “Crossing the Chasm”.
 
Biography:

Monday, June 22, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Tommaso Calarco: Steering many-body quantum dynamics

Tommaso Calarco, University of Ulm

Quantum technologies are based on the manipulation of individual degrees of freedom of quantum systems with exquisite precision. Achieving this in a real environment requires pushing to the limits the ability to control the dynamics of quantum systems of increasing complexity. Optimal control techniques are known to enable steering the dynamics of few-body systems in order to prepare a desired state or perform a desired unitary transformation.

Tuesday, June 23, 2015 3:00 pm - 4:00 pm EDT (GMT -04:00)

Matthew McKague: Interactive proofs for BQP via self-test graph states

Matthew McKague,  University of Otago, New Zealand

Is it possible to check a quantum computer's work? A quantum computation leaves behind no transcript, and for problems outside nondeterministic polynomial time (NP), it is not immediately clear whether we can verify that a quantum computation has been one correctly. Interactive proofs and self-testing offer a means of doing so.

Wednesday, June 24, 2015 12:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Frontiers Distinguished Lecture: Immanuel Bloch

Immanuel Bloch, Max Planck Institute of Quantum Optics

From Topological Bloch Bands to Long-Range Interacting Rydberg Gases - New Frontiers for Ultracold Atoms

Ultracold atoms in optical lattices have enabled to probe strongly interacting many-body phases in new parameter regimes and with powerful new observation techniques.

Tuesday, June 30, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Dong Yang: Operational resource theory of coherence

Dong Yang, University of Barcelona

From the viewpoint of resource theory, we establish the coherence
theory in an operational way. Namely we introduce the two basic concepts
— “coherence distillation” and “coherence cost” in the coherence
transformation processing and show that the evaluations of them are
reduced to single-letter formula: the coherence distillation is given by
the relative entropy of coherence (or in other words, we give the
relative entropy of coherence its operational interpretation) and the

Frank Wilhelm-Mauch, Universität des Saarlandes, Germany

Readout plays a central role in most quantum information protocols, notably in fault tolerance. While the readout of supercondcuting qubits operating in the microwave regime has reached exquisite performance using Josephson Parametric Amplifiers, these ask for large technological overhead that is difficult to scale down. We will show how a recently introduced microwave photon counter, the Josephson Photomultiplier JPM can be used for qubit readout with much less overhead and even elementary data processing on chip.

Tuesday, July 14, 2015 2:00 pm - 3:00 pm EDT (GMT -04:00)

Fabian Furrer: Continuous-Variable Protocols in the Noisy-Quantum-Storage Model

Fabian Furrer, Nippon Telegraph and Telephone (NTT) Corporation Basic Research Laboratories, Japan

We present a protocol for oblivious-transfer that can be implemented with an optical continuous-variable system, and prove its security in the noisy-storage model. This model assumes that the malicious party has only limited capabilities to store quantum information at one point during the protocol. The security is quantified by a trade-off relation between

Thursday, July 30, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Christoph Simon: Extending the quantum domain with quantum optics

Christoph Simon, University of Calgary

Quantum optical systems are well suited for pushing the boundaries of quantum physics. Two big goals in this context are the creation of entanglement over long distances and the observation of quantum effects on macroscopic scales. I will describe various theoretical and some experimental work in these directions.