Undergraduate School on Experimental Quantum Information Processing (USEQIP)
Join us at the Institute for Quantum Computing for a two-week introduction to the theoretical and experimental study of quantum information processing.
Join us at the Institute for Quantum Computing for a two-week introduction to the theoretical and experimental study of quantum information processing.
The Relativistic Quantum Information North (RQI-N) Conference, hosted by the Institute for Quantum Computing (IQC), will bring together an interdisciplinary community of researchers at the interface of quantum information science and relativity.
On February 11, 2016 it was announced that gravitational waves have been detected affecting an instrument on earth. In addition to the realization of a 100 year old prediction the astounding sensitivity of the detector demanded the approaching and overcoming of seemingly fundamental quantum limits on measuring the motion of 25Kg masses. Quantum mechanics is usually thought of applying only to the very small (zeptogrammes and nanometers).
Projective measurement is used as a fundamental axiom in quantum
The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution.
The error threshold for fault-tolerant quantum computation depends
strongly on the error model. Most calculations assume a depolarizing
model, which allows for efficient calculations based on random
applications of Pauli errors. We have been exploring how the
threshold changes for both non-unital and coherent operations. I will
Two-player one-round games have served to be an instrumental model in theoretical computer science. Likewise, nonlocal games consider this model when the players have access to an entangled quantum state. In this talk, I will consider a broader class of nonlocal games (extended-nonlocal games), where the referee shares an entangled state along with the players.
Optimizing Plasmonic Nanoantennas for Emitter Enhancement
Correcting ESR Pulse Sequences for Dynamic Nuclear Polarization
I will give an overview of work at the Centre for Quantum Photonics towards implementation of large-scale linear-optical quantum computing (LOQC) using quantum photonics. Our current research addresses the key obstacles to scalable LOQC, namely overcoming nondeterminism, achieving loss tolerance, and manufacturability.
Entanglement is an important concept in quantum information and computing. In this talk, I present a simple geometrical analysis of all rank-2 quantum mixed states. The analysis is complete for all the bipartite states, and is partial for all the multipartite states.