Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Thursday, February 19, 2015 12:00 pm - 1:00 pm EST (GMT -05:00)

Viv Kendon: Ancilla mediated quantum gates

Viv Kendon, Durham University

Practical quantum gate operations for quantum computing usually take
advantage of extra degrees of freedom in a physical qubit system or use
an extra, ancilla, system. For example, the collective vibrational
modes of ions in a trap are used for the Cirac-Zoller gate. I will
describe our search for the simplest forms of ancilla-controlled quantum
operations. Solving this theoretical puzzle can potentially lead us to
simpler designs for quantum computers that are easier to build. This

Monday, February 23, 2015 2:30 pm - 3:30 pm EST (GMT -05:00)

Masahiro Hotta: Quantum Energy Teleportation: Strong Local Passivity vs. LOCC

Masahiro Hotta, Tohoku University

Quantum Energy Teleportation (QET) is a protocol that allows one to teleport energy making use of pre-existing entanglement of the ground state of quantum many-body systems or quantum fields. I will review the latest results on QET and I will explain its implications on information thermodynamics, such as quantum Maxwell demons and Black Hole thermodynamics. I will also comment on current experimental prospects for QET via the quantum Hall effect.

Tuesday, February 24, 2015 10:30 am - 11:30 am EST (GMT -05:00)

Adam Tsen: Weakly Bound and Strongly Interacting: 1T-TaS2 in the Two-Dimensional Limit

Adam Tsen,  Columbia University

Among the most intriguing aspects of reduced dimensionality in solids is the enhancement of correlation effects (electron-electron, electron-phonon, etc.). In the layered metallic chalcogenides, this gives rise to the formation of various collective electron phases such as charge density waves (CDWs), spin density waves, and superconductivity.

Monday, March 2, 2015 11:00 am - 12:00 pm EST (GMT -05:00)

Thomas Babinec: Quantum Photonic Devices Based on Single Dopants in Solids

Thomas Babinec, Stanford University

Tremendous progress has been made in the development of high-purity semiconductor materials so that their optoelectronic properties can now be controlled at the level of a single active dopant1. These individual impurities, which are quantum systems embedded in a solid-state host, possess diverse applications in quantum information science and technology2. As a simple and noteworthy example, single photons emitted from an optically active dopant may be used to share secure bits via quantum cryptographic key distribution3.

Monday, March 2, 2015 2:30 pm - 3:30 pm EST (GMT -05:00)

Aharon Brodutch: Testing gravity with photons and satellites.

Aharon Brodutch, Institute for Quantum Computing

Our fundamental understanding of the physical universe is governed by
two theories, quantum mechanics and general relativity. While there is
no unified theory of quantum gravity, the two fundamental theories
`peacefully coexist' in all experimentally feasible scenarios.
Nevertheless there are very few situations where both quantum and
general relativistic effects can be probed simultaneously. Experiments
involving photons are the most promising candidates for near-future

Thursday, March 5, 2015 11:45 am - 12:45 pm EST (GMT -05:00)

Laura Mančhinska: Limits to catalysis in quantum thermodynamics

Laura Mančhinska, CQT, Singapore

Quantum thermodynamics is a research field that aims at fleshing out the ultimate limits of thermodynamic processes in the quantum regime. A complete picture of quantum thermodynamics allows for catalysts, i.e., systems facilitating state transformations while remaining essentially intact in their state, very much reminding of catalysts in chemical reactions. In this work, we present a comprehensive analysis of the power and limitation of such thermal catalysis.

Konstantinos Lagoudakis,  Stanford University

Light matter interactions lie in the heart of several phenomena of fundamental and applied interest. Both condensation of exciton polaritons in semiconductor microcavities as well as quantum information processing with charged quantum dots in micro-resonators rely on strong light matter interactions.

Monday, March 9, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Andrew Briggs: The Oxford Questions – and some answers

Andrew Briggs, Oxford

At a conference in Oxford in 2010 a set of questions was formulated with a view to establishing an agenda for subsequent research in quantum reality. Some of these questions are open to experimental investigation. We have since performed tests of the Leggett-Garg inequality in two and in three level systems, in each case violating the condition for macrorealism. We are now addressing another of the questions in single molecule devices using nanofabricated gaps in graphene.

Tuesday, March 10, 2015 7:00 pm - 7:00 pm EDT (GMT -04:00)

Cybersecurity in a quantum world - will we be ready?

Public lecture by Michele Mosca

Emerging quantum technologies will change the way that our online information is stored and secured. To be cyber-safe we must be quantum-safe. It’s possible, but we need to start planning now if we want to be ready in time.

Monday, March 16, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Na Young Kim: Carbon Nanotube Transport and Exciton-Polariton Condensation

Na Young Kim, Stanford University

We in modern society are beneficiaries of advanced electronics, photonics and the combination of two. As an effort to develop new platforms of electronics, photonics and optoelectronics harnessing quantum nature, I have studied transport properties of carbon nanotubes, where long-range interaction plays a significant role. In photonics domain, I have been studying exciton-polaritons in a quantum-well-microcavity structure, where dynamical macroscopic condensation emerge via stimulated scattering process arising from exchange interactions.