Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, August 17, 2015 12:00 am - Friday, August 21, 2015 12:00 am EDT (GMT -04:00)

Quantum Key Distribution (QKD) Summer School

The International QKD Summer School is a five-day program focused on theoretical and experimental aspects of quantum communication with a focus on quantum cryptography. The QKD Summer School aims to provide a solid foundation in relevant approaches and techniques to enable graduate students and young postdoctoral fellows to perform their own independent research.

Wednesday, August 19, 2015 1:00 pm - 2:00 pm EDT (GMT -04:00)

Ying Dong: Quantum Thermodynamics Based on Optomechanical System

Ying Dong, Hangzhou Normal University

Thermodynamics has been highly successful, impacting strongly on the natural sciences and enabling the development of technologies that have changed our lives, from fridges to jet planes. Until recently, it was applied to large systems described by the laws of classical physics. However, with modern technologies miniaturizing down to the nanoscale and into the quantum regime, testing the applicability of thermodynamics in this new realm has become an exciting technological challenge.

Thursday, August 20, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Ibrahim Nsanzineza: Quasiparticles and vortices in superconducting microwave resonators

Ibrahim Nsanzineza, Syracuse University

Nonequilibrium quasiparticles and trapped magnetic flux vortices can significantly impact the performance of superconducting microwave resonant circuits and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing resonator quality factors and qubit lifetimes. Vortices trapped near regions of large microwave currents also contribute excess loss. However, vortices located in current-free areascan actually trap quasiparticles and lead to a reduction in the quasiparticle loss.

Si-Hui Tan, Singapore University of Technology and Design

We introduce an approach to homomorphic encryption on quantum data.
Homomorphic encryption is a cryptographic scheme that allows
evaluations to be performed on ciphertext without giving the evaluator
access to the secret encryption key. Random operations from an finite
abelian unitary group chosen using an encryption key chosen
uniformly at random perform the encryption, and operations that lie
within the centralizer of the encryption group perform the

Wednesday, August 26, 2015 1:00 pm - 2:00 pm EDT (GMT -04:00)

Nitin Jain: Enabling high-speed quantum communication and foiling quantum hackers

Nitin Jain, Northwestern University

Quantum-optical frequency conversion (QFC) provides a method, usually via a nonlinear interaction with an optical ‘pump’ beam, to keep the quantum features of an optical ‘signal’ intact. Most QFC experiments
upconvert near-infrared signal photons to those in the visible or near-visible regime due to the availability of highly-efficient detectors that can be operated at high speeds without incurring a severe noise penalty.

Monday, September 14, 2015 1:00 pm - 1:00 pm EDT (GMT -04:00)

Chris Granade: Practical Bayesian Tomography

Chris Granade, University of Sydney

In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. In this talk, we make these methods practical by solving three distinct problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Our approach allows for practical computation of point and region estimators for quantum states and channels, and allows tracking of time-dependent states.

Saturday, October 3, 2015 11:00 am - 4:00 pm EDT (GMT -04:00)

2015 Open House

The Institute for Quantum Computing (IQC) will open its doors to all members of the community as part of Reunion at the University of Waterloo. Bring the whole family to discover the excitement of quantum mechanics and learn about the world-class research that is happening right here in our community!

Take a look at what's happening at this year's open house!

Thursday, October 15, 2015 10:00 am - Friday, March 11, 2016 4:00 pm EDT (GMT -04:00)

LIGHT Illuminated at THEMUSEUM

Celebrating light and light-based technologies

LIGHT Illuminated celebrates the United Nation's International Year of Light. In this interactive exhibition at THEMUSEUM you can learn about the value and importance of light-based technologies by exploring a black-light room, playing with colour mixing stations, and trying to get through a laser maze.

Joseph Salfi, University of New South Wales

The behavior of conventional transistors derives from large numbers of acceptor and donor impurities that promote carriers into the valence and conduction bands. More recently, nano-electronic devices based on the bound states of individual dopant impurities in silicon have received considerable attention for quantum computation, due to the long spin coherence times of dopants in silicon. This invariably requires control over dopant wavefunctions and the interactions between individual dopants [1].

Monday, November 2, 2015 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Mukund Vengalattore

Measurement-induced localization of an ultracold lattice gas

Mukund Vengalattore, Cornell University

The act of observation has profound consequences on a quantum system. I will describe our experimental demonstration of a Heisenberg microscope based on nondestructive imaging of a lattice gas. We show that the act of imaging these atoms induces their localization - a manifestation of the quantum Zeno effect.