Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

Darrick Chang, The Institute of Photonic Sciences

Significant efforts have been made to interface cold atoms with micro- and nano-photonic systems in recent years. Originally, it was envisioned
that the migration to these systems from free-space atomic ensemble or

Tuesday, September 23, 2014 12:00 pm - 1:00 pm EDT (GMT -04:00)

Vern Paulsen: Quantum chromatic numbers

Vern Paulsen, University of Houston

The chromatic number of a graph has a description as the classical value of a three-person game. If instead one plays a quantum version of this game, then this yields a smaller value--the quantum chromatic number of the graph. However, using the Algebraic Quantum Field Theory (AQFT) model could yield a larger set of quantum correlations, and a different value for the quantum chromatic number.

Tuesday, September 30, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Yury Kurochkin: Quantum optics experiments in Russian Quantum Center

Yury Kurochkin, Russian Quantum Center in Skolkovo, Moscow

In this talk I want to present progress of our quantum optics laboratory. Our laboratory was built in the summer 2013. During the past year we've performed number of beautiful experiments. One of the featured experiments is "Quantum vampire" which demonstrates non-local properties of the annihilation operator. This beautiful effect predicts that if you take particular number of photons from the part of the light beam there will be now shadow.

Monday, October 6, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Val Zwiller: Nanowire quantum dots for quantum optics

Val Zwiller, Delft University of Technology, Netherlands

Nanowires offer exciting opportunities in quantum optics. Using quantum dots in semiconducting nanowires, we demonstrate the generation of single photons as well as pairs of entangled photons. Making electrical contacts to semiconducting nanowires, we make a single quantum dot LED where electroluminescence from a single quantum dot can be studied. Similar devices operated as photodiodes enable the operation of single nanowire avalanche photodiodes.

Tuesday, October 14, 2014 11:00 am - 12:00 pm EDT (GMT -04:00)

Nathan Wiebe: Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits

Nathan Wiebe, Microsoft Research

We develop a method for approximate synthesis of single--qubit rotations of the form e^{-i f(\phi_1,\ldots,\phi_k)X} that is based on the Repeat-Until-Success (RUS) framework for quantum circuit synthesis. We demonstrate how smooth computable functions, f, can be synthesized from two basic primitives. This synthesis approach constitutes a manifestly quantum form of arithmetic that differs greatly from the approaches commonly used in quantum algorithms.

Tuesday, October 14, 2014 4:00 pm - 5:00 pm EDT (GMT -04:00)

Quantum Industry Lecture Series: Nathan Wiebe, Microsoft

Introducing the next installment of the Quantum Industry Lecture Series (QuILS). Nathan Wiebe, a former IQC postdoctoral fellow who is currently working at Microsoft, will talk to us about what it's like to work in research for a technological powerhouse.

Thursday, October 16, 2014 1:15 pm - 2:15 pm EDT (GMT -04:00)

Christopher Chunnilall: Metrology for QKD systems

Christopher Chunnilall, National Physical Laboratory, United Kingdom

National Physical Laboratory (NPL) is developing a measurement infrastructure for traceably characterising the quantum optical components of Quantum Key Distribution (QKD) systems, one of the most commercially advanced quantum technologies, and among the first to directly harness the peculiar laws of quantum physics.