Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

John Morton, University College London

Electron and nuclear spins of donors in silicon are promising candidates for representing quantum bits, with coherence times of up to 3 seconds for the electron spin [1], up to 3 minutes for the neutral donor nuclear spin [2], and 3 hours for the ionized donor nuclear spin [3]. Furthermore, single-shot readout of both the electron spin and nuclear spin have been demonstrated, with measurement fidelities of up to 99.8% [4].

Tuesday, December 9, 2014 2:30 pm - 3:30 pm EST (GMT -05:00)

Torsten Scholak: Excitation energy transfer in ultra-cold Rydberg gases

Torsten Scholak, University of Toronto

Rydberg atoms are highly excited neutral atoms with exceptional properties. Not long ago, interest in Rydberg atoms was limited to their spectroscopic properties. However, in recent years, Rydberg science has become increasingly interdisciplinary. It is now a rapidly progressing research area at the crossroads of atomic, optical, condensed matter physics, and quantum information science with a host of possible applications.

Monday, December 15, 2014 2:30 pm - 3:30 pm EST (GMT -05:00)

Joel Wallman: Contextuality supplies the magic for quantum computation

Joel Wallman, IQC

Quantum computers are poised to deliver a dramatic increase in computational power, which can be used to perform difficult tasks such as simulating molecules for medical research much more efficiently than any current computer. However, it is notoriously difficult to characterize what is needed for a quantum computer to be useful. In this talk I will show that two characteristic quantum phenomena, namely, negative probabilities and contextuality, are equivalent with respect to the stabilizer formalism for qudits (d odd prime).

Monday, January 12, 2015 2:30 pm - 3:30 pm EST (GMT -05:00)

Seamus Davis: Topological quantum phenomena of superfluid 3He

Seamus Davis, Cornell University

Although focus upon this material has diminished, superfluid Helium-3 (3He) remains by far the best-understood unconventional superconductor (superfluid). Moreover, it has recently re-emerged as a system of great theoretical interest because it is the only known odd-parity ‘topological' superfluid. In this reincarnation, it is a candidate for study of the zero-energy Bogoliubov states at superfluid boundaries since they can be viewed as ‘Majorana’ fermions.

Thursday, January 15, 2015 10:00 am - 11:00 am EST (GMT -05:00)

Vern Paulsen: Synchronous games and traces

Vern Paulsen, University of Houston

A game where Alice and Bob are separated, forbidden
to comunicate, receive inputs from the same input set I, and produce
outputs from the same output set O is called synchronous provided that
any time Alice and Bob receive the same input, they are required to

Friday, January 16, 2015 1:00 pm - 2:00 pm EST (GMT -05:00)

Robert Fickler: Quantum experiments with twisted photons

Robert Fickler, University of Vienna

The transverse spatial degree of freedom of light offers great potential to explore quantum informational tasks and interesting features of single photons and quantum entanglement. We developed novel methods to generate, investigate, and verify the entanglement of complex spatial structures. With these methods, we were able to entangle photons with up to 300 quanta of orbital angular momentum (OAM) and to image the effect of entanglement of twisted photons in real-time.

Monday, February 2, 2015 2:30 pm - 3:30 pm EST (GMT -05:00)

Jeff Thompson: Nanoscale quantum systems with single atoms and photons

Jeff Thompson, Harvard

Strong interactions between light and atoms at the single-quantum level are an important ingredient for quantum technologies, and for studies of complex many-particle quantum systems. In this talk, I will describe the development of a novel experimental platform that allows for trapping a single rubidium atom in the evanescent mode of a nano-fabricated optical cavity with sub-wavelength dimensions.

Wednesday, February 4, 2015 12:00 pm - 1:00 pm EST (GMT -05:00)

POSTPONED: Marzio Pozzuoli

This event has been postponed and will be rescheduled for a later date.

Marzio Pozzuoli, Ryerson University

The RuggedCom Story – “A Tale of Canadian Technology Entrepreneurship & Crossing the Chasm”

In 2001 RuggedCom was a fledging startup. A decade later it was bought by Siemens for nearly half a billion dollars. Mr. Pozzuoli, its founder, will discuss its path to success and the role played in that success by the Canadian experience and the strategies outlined in Geoffrey Moore’s iconic book “Crossing the Chasm”.

Masayuki Okano, Kyoto University

Optical coherence tomography (OCT) has been a key technology in medicine and biology [1]; however, the axial resolution has been limited to the order of 10 μm due to the dispersion. As an alternative technique, quantum optical coherence tomography (QOCT) has been demonstrated in 19-μm resolution and shows dispersion-tolerance by virtue of the quantum correlation of entangled photon pairs [2].

Monday, February 9, 2015 1:00 pm - 2:00 pm EST (GMT -05:00)

Swati Singh: Coupling single quantum systems to spin baths

Swati Singh, Harvard

The study of the interaction between quantum systems and their environment is central to the understanding of a broad range of problems. Important examples include the elusive quantum to classical transition, as illustrated most famously by the Schrödinger cat paradox, and non-equilibrium dynamics, as illustrated by the central spin problem. On the applied side, this understanding is an essential step towards quantum metrology, including the development of quantum noise limited detectors.