Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Friday, February 3, 2017 2:00 pm - 2:00 pm EST (GMT -05:00)

Seminar: Justin Bohnet

Entanglement in a synthetic quantum magnet made of hundreds of trapped ions

Justin Bohnet, National Institute of Standards and Technology, Boulder

Entanglement between individual quantum objects exponentially increases the complexity of quantum many-body systems, such that models with more than 40 quantum bits cannot be fully studied using conventional techniques on classical computers. To make progress at this frontier of physics, Feynman’s pioneering ideas of quantum computation and quantum simulation are now being pursued in a wide variety of well-controlled platforms.

Monday, February 6, 2017 2:00 pm - 2:00 pm EST (GMT -05:00)

Seminar: Simon Gröblacher

Quantum experiments exploiting the radiation pressure interaction between light and matter

Simon Gröblacher, Delft University of Technology

Mechanical oscillators coupled to light via the radiation pressure force have attracted significant attention over the past years for allowing tests of quantum physics with massive objects and for their potential use in quantum information processing. Recently demonstrated quantum experiments include entanglement and squeezing of both the mechanical and the optical mode.

Wednesday, February 8, 2017 9:30 am - 9:30 am EST (GMT -05:00)

Seminar: Beni Yoshida

Quantum error-correction in black holes

Beni Yoshida, Perimeter Institute

It is commonly believed that quantum information is not lost in a black hole. Instead, it is encoded into non-local degrees of freedom in some clever way; like a quantum error-correcting code. In this talk, I will discuss recent attempts to resolve some paradoxes in quantum gravity by using the theory of quantum error-correction.

Friday, February 10, 2017 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series:

Atomic scale study of Dirac materials: graphene and topological insulator (Bi2Se3)

Ying Liu

Graphene and topological insulator Bi2Se3 are newly discovered Dirac materials with exotic physical and electronic properties. The molecular beam epitaxy (MBE) and in situ characterization at atomic scale of the materials are demonstrated in this talk[1][2]. Artificial defects of graphene are created by Ar for extending its functions. Their structural, electronic properties and charge state were studied by scanning tunneling microscopy (STM) and q-plus atomic force microscopy (q-plus AFM ), respectively.

Friday, February 10, 2017 2:00 pm - 2:00 pm EST (GMT -05:00)

Seminar: Onur Hosten

Quantum entanglement for precision sensing with atoms and light

Onur Hosten, Stanford University

In the last decades, advances in the level of precision in controlling atomic and optical systems opened up the low-energy precision frontier to fundamental physics tests in addition to yielding new applied sensing technologies. In this talk I will focus on our experiments with cold atoms highlighting some of the most recent developments in the prospect of using quantum entanglement to further improve the precision of atomic and optical sensors.

Monday, February 13, 2017 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Liuyan Zhao

An inversion-symmetry-broken order inside the pseudogap region of a cuprate revealed by optical second harmonic generation

Liuyan Zhao, University of Michigan

The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low-energy electronic excitations. In order to understand its microscopic nature, it is imperative to identify the full symmetries both prior to and within the pseudogap region. In this talk, I will describe our experimental results of symmetry properties on YBa2Cu3Oy across a wide temperature and doping range using a recently developed nonlinear optical rotational anisotropy technique.

Monday, February 13, 2017 4:00 pm - 4:00 pm EST (GMT -05:00)

Seminar: William Slofstra

The mathematics of non-local games

William Slofstra, Institute for Quantum Computing

Non-local games are an important subject in quantum information. They provide relatively simple experimental scenarios for testing the axioms of quantum mechanics, and have been proposed for other practical applications, especially in device-independent cryptography. However, we do not know how to answer many of the basic mathematical questions about non-local games.

Wednesday, February 15, 2017 11:30 am - 11:30 am EST (GMT -05:00)

Seminar: Mehran Vahdani

Carbon nanotube forest from energy conversion to MEMS devices and a laser based single sub 10nm particle analyzer: new developments in nanotechnology

​Mehran Vahdani, The University of British Columbia

Vertically aligned carbon nanotubes, so called CNT forests, have unique properties that make them excellent candidates in a wide variety of applications ranging from nanotechnology to electronics and photonics.

Thursday, February 23, 2017 9:30 am - 9:30 am EST (GMT -05:00)

Seminar: Henry Yuen

Quantum entanglement through the lens of computation and cryptography 

Henry Yuen, University of California at Berkeley

Quantum entanglement was once a philosophical peculiarity in physics — Einstein famously derided it as spooky action at a distance. Alongside wave/particle duality and the uncertainty principle, entanglement was just another bizarre feature of quantum mechanics. However, the study of quantum computation and quantum information has established entanglement as central to the story that connects quantum physics, computer science, and information theory.

Friday, February 24, 2017 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Epitaxial Growth of Silicon Nanowires and Niobium Thin Films for Magnetic Resonance Force Microscopy

Michele Piscitelli

Magnetic Resonance Force Microscopy (MRFM) is an imaging technique enabling the acquisition of magnetic resonance images at nanometer scales. Single electron spin sensitivity has been demonstrated [1] and current MRFM research is focused on working towards achieving single nuclear spin sensitivity. In general, an MRFM setup requires a nano-scale source of high magnetic field gradients to modulate the sample spins and a cantilever-based detection scheme to measure their magnetic moment.