Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, March 22, 2017 11:00 am - 11:00 am EDT (GMT -04:00)

Seminar: Mohammad Ansari

Entropy measurement in quantum systems

Dr. Mohammad Ansari, Peter Grünberg Institute, and Jülich-Aachen Research Alliance Institute (JARA)

Entropy is an important information measure. A complete understanding of entropy flow will have applications in quantum thermodynamics and beyond; for example it may help to identify the sources of fidelity loss in quantum communications and methods to prevent or control them. Being nonlinear in density matrix, its evaluation for quantum systems requires simultaneous evolution of more-than-one density matrix.

Friday, March 24, 2017 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series - Special Seminar

Optical manipulation of polariton in semiconductor microstructures

Félix Marsault, French National Center for Scientific Research

Cavity polaritons are bosonic quasiparticles arising from the strong coupling between photons and excitons. They can massively occupy a single quantum state in the regime of polariton lasing [1], showing particular properties such as long coherence times [1], long range spatial coherence [1] and a linearly polarized emission [1,2,3]. Moreover, they possess strong excitonic nonlinearities and thus provide a new platform for elliptical photonic manipulation, with the demonstration of a polariton spin switch [4], polariton transistors [5] and the proposal of other proof-of-principle operations for elliptical integrated logic circuits [6].

Monday, March 27, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Thomas Vidick

Rigorous RG algorithms and area laws for low energy eigenstates in 1D

Thomas Vidick, California Institute of Technology

One of the central challenges in the study of quantum many-body systems is the complexity of simulating them on a classical computer. We give a new algorithm for finding low energy states for 1D systems, based on a rigorously justified RG type transformation.

Monday, April 3, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Kin Fai Mak

Superconductivity in single-layer NbSe2

Kin Fai Mak, Pennsylvania State University

The discovery of graphene has stimulated not only the field of carbon nanoelectronics, but also studies of novel electronic phenomena in a wide range of atomically thin van der Waals’ materials. In this talk, I will discuss our recent effort in the isolation of a single layer of niobium diselenide (NbSe2), a new non-centrosymmetric superconductor.

Friday, April 7, 2017 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

The puzzle of genuine multiparticle interference

Sascha Agne, IQC

Two recent experiments demonstrate access to a new realm of quantum phenomena called genuine multiparticle interference. For three photons this means that interference between all three photons is observed while, simultaneously, neither pairs nor single photons display interference.

Monday, April 10, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Muxin Han

Quantum Gravity, Tensor Network, and Holographic Entanglement Entropy

Muxin Han, Florida Atlantic University

The relation between nonperturbative Quantum Gravity and tensor network is explored from the perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the quantum gravity states in a space Σ with boundary ∂Σ is an exact holographic mapping. The tensor network, understood as the boundary quantum state, is the output of the exact holographic mapping emerging from a coarse graining procedure of quantum gravity state.

Monday, April 17, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Peter Maunz

Scalable surface ion traps for high-fidelity quantum operations

Peter Maunz, Sandia National Laboratories

Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed [1]. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures.

Friday, April 21, 2017 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Quantum Information Enabled Neutron Interferometry

Joachim Nsofini, IQC

In the quest to explore big quantum systems, there have been opportunities to explore smaller quantum system like the neutron interferometer. A neutron interferometer (NI) has proven to be a useful tool in the study of quantum effects ranging from  experiments with single particle interference to measuring quantities of significant importance in condensed-matter and Standard Model physics.

Monday, April 24, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Leonid Pryadko

Dephasing with strings attached

Leonid Pryadko, University of California, Riverside

Is there a difference between the quantum dynamics of a "real" particle and a collective excitation, like that in a spin ice, which creates a measurable gauge field? I will argue that in the presence of weak dephasing, the answer depends on the quantity measured.

Tuesday, April 25, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Special seminar: Abel Molina

The optimality of projections for quantum state exclusion

Abel Molina, IQC

We will first motivate the problem of quantum state exclusion of pure states, through its connections with the PBR game and with compatibility conditions for quantum state assignments. Then, we will discuss our recent result regarding the optimality of projections for perfect state exclusion of 3 pure states in 3 dimensions (arXiv:1702.06449).