Thesis defence

Wednesday, May 22, 2024 8:30 am - 9:30 am EDT (GMT -04:00)

Paul Oh PhD Thesis Defense

Entangled photon source for a long-distance quantum key distribution

Remote

Satellite-based Quantum Key Distribution (QKD) leverages quantum principles to offer unparalleled security and scalability for global quantum networks, making it a promising solution for next-generation secure communication systems. However, many technical challenges need to be overcome. This thesis focuses on theoretical modeling and experimental validation for long-distance QKD, as well as the development and testing of the quantum source necessary for its implementation, to take strides towards realization. While various approaches exist for demonstrating long-distance QKD, here we focus on discussing the approach of sending entangled photon pairs from an optical quantum ground station (OQGS), one through free-space on one end (uplink), and the other one through ground on the other end. This is also because our research team at the Quantum Photonics Laboratory (QPL), collaborating with the Canadian Space Agency (CSA), is planning to demonstrate Canada's first ground-to-space QKD in the near future. The mission is called Quantum Encryption and Science Satellite (QEYSSat) mission, which is planned to deploy a Low-Earth Orbit (LEO) satellite for the purpose for demonstrating QKD.

In the thesis, we first discuss the considerations relevant to establishing a long-distance quantum link. Since a substantial amount of research has already been conducted on optical fiber communication through ground-based methods, our focus is specifically directed towards ground-to-space (i.e., free space) quantum links. One of the most concerning aspects in free- space quantum communication is signal attenuation caused by environmental factors. We particularly examine pointing errors that arise from satellite tracking systems. To investigate this further, we designed a tracking system employing a specific tracking algorithm and conducted tracking tests to validate its accuracy, using the International Space Station (ISS) as a test subject. Our findings illustrate the potentially significant impact of inaccurate ground station-to- satellite alignment on link attenuation, according to our theoretical model. Given that photons serve as the signals for the QKD, we also investigate the background light noise resulting from light pollution, which is another concerning aspect, as it could worsen the link attenuation. Conducting light pollution measurements around our Optical Quantum Ground Station (OQGS), we estimate the minimum photon pair rate required for successful QKD, taking into account both the obtained values from these measurements and the expected level of link loss.

Having determined the minimum photon pair rate and other requirements for the long-distance QKD, we proceed to fully elaborate on the development process of the Entangled Photon Source (EPS), which is one of the crucial devices for demonstrating entanglement-based QKD. We use a nonlinear crystal for generating photon pairs, and experimentally obtain the photon pair rate produced from it. Here, the thesis also includes a detailed explanation of the customization process for the crystal oven. Next, we implement a beam displacer scheme along with the Sagnac loop scheme to create a robust interferometer, responsible for creating quantum entanglement. In addition, we demonstrate a novel approach to effectively compensate for the major weaknesses of the interferometer, namely spatial and temporal walk-offs. Finally, we conduct the entanglement test and demonstrate its suitability for long-distance QKD. As a side project, we

investigate the performance degradation of nonlinear crystals in response to proton radiation, exploring the potential of deploying the EPS in space for downlink QKD in the future. This thesis provides a comprehensive analysis and testing of elements required for long-distance QKD, contributing to the advancement of future global quantum networks.

Supervisor: Thomas Jennewein

Thursday, October 26, 2023 2:00 pm - 3:00 pm EDT (GMT -04:00)

Melissa Henderson PhD Thesis Defence

Neutron Scattering Investigations of Three-Dimensional Topological States

Physics, 200 University Ave West, Room PHY 352
Waterloo, ON, CA N2L 3G1

Magnetic skyrmions represent a unique class of topological magnet characterized by nanometric swirling spin-textures which possess a non-trivial Berry curvature. The combination of their topological stability, unique transport properties, and emergent dynamics has made skyrmions the forerunner for novel spintronic high-density memory and ultra-low power logic device applications. In this thesis, we explore the development and application of various neutron scattering tomography and structured neutron beam techniques for three-dimensional investigations of bulk magnetic topological materials and their defect-mediated dynamical phenomena. Characterization of the disordered multi-phase bulk skyrmion material, Co8Zn8Mn4, was performed through detailed SANS measurements over the entire temperature-magnetic field phase diagram of the material as a function of a dynamic skyrmion ordering sequence. 2D SANS images in combination with micromagnetic simulations reveal a novel disordered-to-ordered skyrmion square lattice transition pathway which represents a new type of non-charge conserving topological transition. In the metastable skyrmion triangular lattice phase, dynamical field-dependent skyrmion responses showed an exotic memory phase in spite of hysteresis protocols involving field-induced saturation into the ferromagnetic phase. Three-dimensional examinations of skyrmion stabilization mechanisms and their dynamical defect pathways were explored using a novel SANS tomography technique which processes multi-projection neutron scattering images as its input. Application of the technique to the ordered thermal equilibrium skyrmion triangular lattice phase yielded the first three-dimensional visualizations of a bulk skyrmion lattice. The reconstructions unveiled a host of exotic skyrmion features, such as branching, segmented, twisting, and filament structures, mediated by three-dimensional topological transitions through two different emergent monopole (MP)-antimonopole (AMP) defect pathways. Finally, the direct identification and determination of topological features and defects in bulk micromagnetic materials, without a priori knowledge of the sample, was explored using holographic approaches for the generation of neutron helical waves. Linear neutron waves in a conventional SANS setup were input on microfabricated gratings which consist of arrays of various q-fold fork-dislocation phase-gratings with nanometric spatial dimensions. Far-field scattering images exhibited doughnut intensity profiles centered on the first diffraction orders, thereby demonstrating the tunable generation of topological neutron states for phase- and topology-matched studies of quantum materials. The amalgamation of these works demonstrates the development and application of novel tools for direct investigations of bulk topological magnetic materials, while uncovering a diverse collection of skyrmion energetics, disorder-dependent dynamics, and three-dimensional topological transition defect pathways. These methods and results open the door to a new generation of neutron scattering techniques for the probing of exotic topological interactions and the complete standalone characterization of quantum materials and their topological phenomena.