**Matthijs Vernooij, TU Delft**

**"Derivations for symmetric quantum Markov semigroups"**

Quantum Markov semigroups describe the time evolution of the operators in a von Neumann algebra corresponding to an open quantum system. Of particular interest are so-called symmetric semigroups. Given a faithful state, one can define the GNS- and KMS-inner product on the von Neumann algebra, and a semigroup is GNS- or KMS-symmetric if it is self-adjoint w.r.t. the inner product. GNS-symmetry implies KMS-symmetry, and both coincide if the state is a trace. It was shown in 2003 that the generator of a tracially symmetric quantum Markov semigroup can be written as the 'square' of a derivation, i.e. d* after d, where d is a derivation to a Hilbert bimodule. This result has proven to be very influential in many different directions. In this talk, we will look at this problem in the case that our state is not tracial. We will start by discussing how a computer can be used to decide whether such a derivation exists in finite dimensions, and work our way up to a general result on KMS-symmetric quantum Markov semigroups. This is joint work with Melchior Wirth.

This seminar will be held both online and in person: