Contact Info
Pure MathematicsUniversity of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada
N2L 3G1
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
Shaoshi Chen, Chinese Academy of Sciences, Beijing
"Creative Telescoping for Algebraic Functions"
The problem of finding linear differential equations with polynomial
coefficients for parametric integrals has a long history. It at least dates back to Picard in 1902 who proved the existence of such equations for integrals of algebraic functions involving parameters, nowadays so-called
Picard-Fuchs equations. This has been generalized to higher-dimensional cases and led to Gauss–Manin connections. The key in computer algebra systems for obtaining such linear differential equations is the method of creative telescoping, which was first formulated by Zeilberger in the 1990s as an algorithmic tool for evaluating definite integrals and sums with parameters. The method also enables us to prove a large number of combinatorial identities in an automatic way. In this talk, I will present some recent work on creative telescoping for algebraic functions.
(Joint work with Manuel Kauers, Christoph Koutschan and Michael F. Singer)
MC 5403
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.