Wednesday, December 8, 2021 — 4:00 PM EST

Lara Ismert, Embry-Riddle Aeronautical University

"Quantum graphs and their infinite path spaces"

A quantum graph is a triple that consists of a finite-dimensional C*-algebra, a state, and a quantum adjacency matrix. Analogous to the Cuntz-Krieger algebra of a classical graph, the quantum Cuntz-Krieger (QCK) algebra of a quantum graph is generated by the operator coefficients of matrix partial isometries. In this talk, we discuss connections between a QCK algebra and a Cuntz-Pimsner algebra associated to a quantum graph correspondence, and in the complete quantum graph case, connections between the QCK algebra and a particular Exel crossed product. We end by discussing the challenges in defining the “infinite path space” for a quantum graph.

This seminar will be held jointly online and in person:

Event tags 

S M T W T F S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
  1. 2022 (57)
    1. May (9)
    2. April (14)
    3. March (15)
    4. February (12)
    5. January (7)
  2. 2021 (135)
    1. December (11)
    2. November (22)
    3. October (15)
    4. September (5)
    5. August (15)
    6. July (17)
    7. June (15)
    8. May (1)
    9. April (4)
    10. March (11)
    11. February (9)
    12. January (10)
  3. 2020 (103)
  4. 2019 (199)
  5. 2018 (212)
  6. 2017 (281)
  7. 2016 (335)
  8. 2015 (211)
  9. 2014 (235)
  10. 2013 (251)
  11. 2012 (135)