University COVID-19 update

The University of Waterloo is constantly updating our most Frequently Asked Questions.

Questions about buildings and services? Visit the list of Modified Services.

Please note: The University of Waterloo is closed for all events until further notice.

Analysis SeminarExport this event to calendar

Friday, October 9, 2015 — 3:30 PM EDT

Javad Mashreghi, Laval University

"The Halmos Conjecture on the Numerical Range"

Let $T$ be an operator on a Hilbert space $H$ with numerical radius $w(T)
\leq 1$. Halmos conjectured that $w(T^n) \leq 1$, $n \geq 1$. After
several partial results, it was finally settled by Berger using dilation
theory. The Berger--Stampfli theorem, a generalization of the conjecture,
says that if $f$ is a function in the disk algebra such that $f(0)=0$,
then $w(f(T))\leq \|f\|_\infty$. We give an elementary proof of this
result using finite Blaschke products.
 
Joint work with H. Klaja and T. Ransford.
 
MC 5417

S M T W T F S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2020 (70)
    1. July (2)
    2. June (1)
    3. May (3)
    4. March (16)
    5. February (26)
    6. January (22)
  2. 2019 (199)
    1. December (7)
    2. November (26)
    3. October (19)
    4. September (13)
    5. August (7)
    6. July (12)
    7. June (18)
    8. May (22)
    9. April (11)
    10. March (25)
    11. February (17)
    12. January (22)
  3. 2018 (219)
  4. 2017 (281)
  5. 2016 (335)
  6. 2015 (211)
  7. 2014 (235)
  8. 2013 (251)
  9. 2012 (135)