Wednesday, March 20, 2019 — 3:30 PM EDT

Yuanhang Zhang, Jilin University

"Connecting invertible analytic Toeplitz operators in $G(\mathcal{T}(\mathcal{P}^{\perp}))$"

We prove that there exists an orthonormal basis $\mathcal{F}$ for classical Hardy space $H^2$, such that each invertible analytic Toeplitz operator $T_\phi$ (i.e. $\phi$ is invertible in $H^\infty$) could be connected to the identity operator via a norm continuous path of invertible elements of the lower triangular operators with respect to $\mathcal{F}$.

This is a joint work with Ji, Youqing (Jilin University) and Liu, Li (Jilin University).

MC 5417

S M T W T F S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2021 (135)
    1. December (11)
    2. November (22)
    3. October (15)
    4. September (5)
    5. August (15)
    6. July (17)
    7. June (15)
    8. May (1)
    9. April (4)
    10. March (11)
    11. February (9)
    12. January (10)
  2. 2020 (103)
    1. December (10)
    2. November (12)
    3. October (4)
    4. September (3)
    5. August (1)
    6. July (5)
    7. June (1)
    8. May (3)
    9. March (16)
    10. February (26)
    11. January (22)
  3. 2019 (199)
  4. 2018 (212)
  5. 2017 (281)
  6. 2016 (335)
  7. 2015 (211)
  8. 2014 (235)
  9. 2013 (251)
  10. 2012 (135)