Contact Info
Pure MathematicsUniversity of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada
N2L 3G1
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
Spiro Karigiannis, Department of Pure Mathematics, University of Waterloo
"Metric compatible connections in dimension 3"
Let $(M, g)$ be an oriented Riemannian manifold. If $D$ is a $g$-compatible connection on $TM$, then the difference $D - \nabla$, where $\nabla$ is the Levi-Civita connection of $g$, is uniquely determined by the torsion $T$ of $D$. The Ricci curvature $F_{ij}$ of $D$ is in general not symmetric. Its skew part can be expressed in terms of the torsion $T$ and its covariant derivative $\nabla T$. In dimension $3$, we can further exploit the fact that $\Lambda^2 T^* M \cong T^* M$ via the Hodge star to express the torsion as a $2$-tensor on $M$. Moreover, in dimension $3$, even if $T \neq 0$, the curvature $4$-tensor $F_{ijkl}$ of $D$ is still completely determined by the Ricci tensor $F_{ij}$. I will explain these various facts and briefly discuss why I am interested in such objects.
Zoom meeting:
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.