## Contact Info

Pure MathematicsUniversity of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x43484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

Friday, May 29, 2020 — 2:30 PM EDT

**Spiro Karigiannis, Department of Pure Mathematics, University of Waterloo**

"Towards higher dimensional Gromov compactness in $G_2$ and $\mathrm{Spin}(7)$ manifolds"

Let $(M, \omega)$ be a compact symplectic manifold. If we choose a compatible almost complex structure $J$ (which in general is not integrable) then we can study the space of $J$-holomorphic maps $u : \Sigma \to (M, J)$ from a compact Riemann surface into $M$. By appropriately “compactifying” the space of such maps, one can obtain powerful global symplectic invariants of $M$. At the heart of such a compactification procedure is understanding the ways in which sequences of such maps can degenerate, or develop singularities. Crucial ingredients are conformal invariance and an energy identity, which lead to to a plethora of analytic consequences, including: (i) a mean value inequality, (ii) interior regularity, (iii) a removable singularity theorem, (iv) an energy gap, and (v) compactness modulo bubbling.

Riemannian manifolds with closed $G_2$ or $\mathrm{Spin}(7)$ structures share many similar properties to such almost Kahler manifolds. In particular, they admit analogues of $J$-holomorphic curves, called associative and Cayley submanifolds, respectively, which are calibrated and hence homologically volume-minimizing. A programme initiated by Donaldson-Thomas and Donaldson-Segal aims to construct similar such “counting invariants” in these cases. In 2011, a somewhat overlooked preprint of Aaron Smith demonstrated that such submanifolds can be exhibited as images of a class of maps $u : \Sigma \to M$ satisfying a conformally invariant first order nonlinear PDE analogous to the Cauchy-Riemann equation, which admits an energy identity involving the integral of higher powers of the pointwise norm $|du|$. I will discuss joint work with Da Rong Cheng (Chicago) and Jesse Madnick (McMaster) in which we establish the analogous analytic results of (i)-(v) in this setting. (To appear in Asian J. Math., available at arXiv:1909.03512)

Link: meet.google.com/rne-ewds-gim

University of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x43484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.