Adrian Dawid, University of Cambridge
A promenade along the A-side
In this talk we will take a closer look at some of the structures that live on the A-side of mirror symmetry. In particular, the Fukaya category and symplectic cohomology. Along the way we will look at concrete examples of homological mirror symmetry. After a reminder about the Fukaya category, we will introduce symplectic cohomology. We will then discuss the relationship between these two given by open-closed and closed-open string maps. We will look at some examples with an emphasis on the mirror symmetry perspective. If time permits, we will also take a look at some structures that do not (yet?) have an obvious analogue under mirror symmetry, such as the action filtration of the Fukaya category and related invariants.
MC 2017