Contact Info
Pure MathematicsUniversity of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada
N2L 3G1
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
Zhenchao Ge, Department of Pure Mathematics, University of Waterloo
"Irregularities of Dirichlet L-functions and a parity bias in gaps of zeros"
The integral of Hardy's Z-function from $0$ to $T$ measures the occurrence of its sign changes. Hardy proved that this integral is $o(T)$ from which he deduced that the Riemann zeta-function has infinitely many zeros on the critical line. A. Ivić conjectured this integral is $O(T^{1/4})$ and $\Omega_{\pm}(T^{1/4})$ as $T\to\infty$. These estimates were proved, independently, by M. A. Korolev and M. Jutila.
In this talk, we will show that the analogous conjecture is false for the Z-functions of certain "special" Dirichlet L-functions. In particular, we show that the integral of the Z-function of a Dirichlet L-functions from $0$ to $T$ is asymptotic to $c_\chi T^{3/4}$ and we classify precisely when the constant $c_\chi$ is nonzero. Somewhat surprisingly, numerical evidence seems to suggest that the unexpectedly large mean value is caused by a currently unexplained parity bias in the gaps between the zeros of these "special" Dirichlet L-functions.
This is joint work with Jonathan Bober and Micah Milinovich.
MC 5501
Departmental office: MC 5304
Phone: 519 888 4567 x43484
Fax: 519 725 0160
Email: puremath@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.