## Contact Info

Pure MathematicsUniversity of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x43484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

Tuesday, July 21, 2020 — 10:00 AM EDT

**Ehsaan Hossain, Department of Pure Mathematics, University of Waterloo**

"Recurrence in Algebraic Dynamics"

Let $\varphi:X\dashrightarrow X$ is a rational mapping of an algebraic variety $X$ defined over $\C$. The *orbit* of a point $x\in X$ is the sequence $\{x,\varphi(x),\varphi^2(x),\ldots\}$. Our basic question is: how often does this orbit intersect a given closed set $C$? Thus we are interested in the *return set*

\[ E := \{n\geq 0 : \varphi^n(x)\in C\}. \]

Is it possible for $E$ to be the set of primes? Or the set of perfect squares? The *Dynamical Mordell-Lang Conjecture* (DML) says no: it asserts that $E$ is infinite only when it contains an infinite arithmetic progression. Geometrically, if the orbit intersects $C$ infinitely often, then in fact this intersection must occur periodically.

Although the DML Conjecture remains open in general, an elegant approach of Bell-Ghioca-Tucker obtains this periodicity when $E$ is a set of *positive density*. In this thesis, our first result is the generalization of the Bell-Ghioca-Tucker Theorem to the action an amenable semigroup on an algebraic variety (these are the semigroups in which "density" can be naturally defined). We also use ultrafilters to provide a combinatorial version for arbitrary semigroups; as a simple example, our result shows that the set $E$ cannot be equal to the ternary automatic set $\{n\in \N : [n]_3 \text{ has no 2's}\}$. Second, in joint work with Bell and Chen, we investigate dynamical sequences of the form $u_n=f(\varphi^n(x))$, where $f:X\dashrightarrow K$ is a rational function; we obtain several DML-type conclusions for this sequence, consequently recovering classical combinatorial theorems of Bézivin, Methfessel, and Polyá. Third, an investigation of other types of noetherian algebraic objects leads us to polycyclic-by-finite groups, and we prove an analogue of the Bell-Ghioca-Tucker Theorem for an automorphism of such a group.

Online

University of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x43484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.