Tuesday, February 2, 2016 — 10:30 AM EST

Hongdi Huang, Pure Mathematics, University of Waterloo

"Morita Theory IV: The Morita Context"

If $F:\mathrm{Mod}_R \rightarrow \mathrm{Mod}_S$ is a Morita equivalence, then it preserves progenerators, so $P_S:= F(R_R)$ is a progenerator in $\mathrm{Mod}_S$. We'll see that that $P_S$ has a left $R$-module structure and $F\simeq -\otimes _RP_S$, thus giving rise to a \textit{Morita context} between $R$ and $S$. Conversely, the existence of a Morita context implies that $R$ and $S$ are Morita equivalent.

Location 
MC 5403


,
Canada

S M T W T F S
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
  1. 2021 (87)
    1. September (5)
    2. August (15)
    3. July (17)
    4. June (15)
    5. May (1)
    6. April (4)
    7. March (11)
    8. February (9)
    9. January (10)
  2. 2020 (103)
    1. December (10)
    2. November (12)
    3. October (4)
    4. September (3)
    5. August (1)
    6. July (5)
    7. June (1)
    8. May (3)
    9. March (16)
    10. February (26)
    11. January (22)
  3. 2019 (199)
  4. 2018 (212)
  5. 2017 (281)
  6. 2016 (335)
  7. 2015 (211)
  8. 2014 (235)
  9. 2013 (251)
  10. 2012 (135)