Marissa Loving, Georgia Institute of Technology
"Symmetries of surfaces: big and small"
We will introduce both finite and infinite-type surfaces and study their collections of symmetries, known as mapping class groups. The study of the mapping class group of finite-type surfaces has played a central role in low-dimensional topology stretching back a hundred years to work of Max Dehn and Jakob Nielsen, and gaining momentum and significance through the celebrated work of Bill Thurston on the geometry of 3-manifolds. In comparison, the study of the mapping class group of infinite-type surfaces has exploded only within the past few years. Nevertheless, infinite-type surfaces appear quite regularly in the wilds of mathematics with connections to dynamics, the topology of 3-manifolds, and even descriptive set theory -- there is a great deal of rich mathematics to be gained in their study! In this talk, we will discuss the way that the study of surfaces intersects and interacts with geometry, algebra, number theory, and combinatorics, as well as some of my own contributions to this vibrant area of study.
Zoom link: https://uwaterloo.zoom.us/j/99159090516?pwd=Y1REWmRLd3B4cFhraE1kR0ZTU3JJZz09