Student Number Theory SeminarExport this event to calendar

Monday, June 6, 2016 — 2:30 PM EDT

Anton Mosunov, Department of Pure Mathematics, University of Waterloo


“The number of solutions of a Thue equation”

Let F be an irreducible binary form of degree d > 2 and m be a positive integer. In 1909, Thue famously proved that the number of solutions to |F(x,y)| = m is finite. In the 1980’s Evertse demonstrated that the number of solutions to |F (x, y)| = m with coprime x and y is bounded above by some effective constant C, which depends only on d and m. In this talk, we will present the technique of Bombieri and Schmidt for showing that one can take C = cdt, where cis a positive absolute constant and t is the number of prime divisors of m. We will also discuss various refinements of this result due to Stewart, Akhtari, Thunder, Sharma and Saradha.

MC 5403

S M T W T F S
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
  1. 2021 (83)
    1. September (1)
    2. August (15)
    3. July (17)
    4. June (15)
    5. May (1)
    6. April (4)
    7. March (11)
    8. February (9)
    9. January (10)
  2. 2020 (103)
    1. December (10)
    2. November (12)
    3. October (4)
    4. September (3)
    5. August (1)
    6. July (5)
    7. June (1)
    8. May (3)
    9. March (16)
    10. February (26)
    11. January (22)
  3. 2019 (199)
  4. 2018 (212)
  5. 2017 (281)
  6. 2016 (335)
  7. 2015 (211)
  8. 2014 (235)
  9. 2013 (251)
  10. 2012 (135)