## Contact Info

Pure MathematicsUniversity of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x33484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

Visit our COVID-19 information website to learn how Warriors protect Warriors.

Please note: The University of Waterloo is closed for all events until further notice.

Monday, July 15, 2013 — 11:30 PM EDT

Let sq(n) denote the sum of the digits of a number n in base q. For example, s2(n) represents the number of 1s in the binary expansion of n. In 1978, Kenneth B. Stolarsky showed that lim inf n!1 s2(n2) s2(n)

= 0 using bounds obtained from analytical methods. In the last presentation we showed that the ratio s2(n2) s2(n) can indeed hit every positive rational number. In this presentation, we show that the same is

true for this ratio in general base q, that is sq(n2) sq(n) : n 2 N

= Q+: for all q 2. If time permits, we will also look at powers with certain fractional exponents to derive similar conclusions.

Location

MC - Mathematics & Computer Building

5046

200 University Avenue West

Waterloo, ON N2L 3G1

Canada

200 University Avenue West

Waterloo, ON N2L 3G1

Canada

University of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x33484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1