Kathryn E. Hare

Contact information

Department of Pure Mathematics Kathryn E. Hare
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Office room number: Mathematics & Computer (MC) 5336
Office telephone number: 519-888-4567 ext. 36633
Fax number: 519-725-0160
Email: kehare@uwaterloo.ca

Curriculum Vitae

Degrees

  • PhD (University of British Columbia) 1986

  • BMath (University of Waterloo) 1981

<--break->Awards

  • Honourary Doctorate of Technology, Chalmers University of Technology, 2011

  • Female Guest Professor, Sweden, 2000-2001

  • AMS Featured Review, 1995

  • NSERC Postgraduate Scholarship, 1983-85

  • I.W. Killam Predoctoral Fellowship, 1985-86

  • NSERC Operating Grant, 1987-date

<--break->Academic appointments

Dates Position Institution
2013-2014 Visiting Professor University of St. Andrews
2007-2008 Visiting Professor University of Hawaii-Manoa
Summer 2002 AARMS Workshop Instructor Memorial University
2000-2001 Visiting Professor Chalmers University of Technology and
Goteborg University
1996-Present Full Professor University of Waterloo
1991-96 Associate Professor University of Waterloo
1993-94 Visiting Fellow University of New South Wales
1988-91 Assistant Professor University of Waterloo
1986-88 Assistant Professor University of Alberta

<--break->

University of Waterloo Administrative appointments

Dates Position
2014-2018 Chair, Department of Pure Mathematics
2008-2012 Associate Chair for Graduate Affairs, Department of Pure Mathematics
2005 Associate Chair for Graduate Affairs, Department of Pure Mathematics
1999-2000 Associate Chair for Undergraduate Affairs, Department of Pure Mathematics
1994-1999 Associate Chair for Graduate Affairs, Department of Pure Mathematics

<--break->

External service

Dates Position
2005-date Mentor for Association for Women in Mathematics
2011-2012; 2013-2014 Selection of Wallenberg Academy Fellows for Chalmers University
2012 Ontario Graduate Scholarship Panel
2010-2012 Chair CMS Women in Math Committee
2009 External Reviewer, University of Regina Mathematics Department
2007-2012 Editor Canadian Math Bulletin & Canadian Journal of Math
2003-2005 Vice President Canadian Mathematics Society
2003-2005 Canadian Mathematics Society Endowment Funds Committee
2003-2005 Canadian Mathematics Society Education Committee
2003-2005 Canadian Mathematics Society Women in Math Committee
2003 External Reviewer, Dalhousie University Math Department
2002-2005 NSERC Grant Selection Committee for Mathematics
2002-2003 Canadian Mathematics Society Endowment Funds Committee. Chair
2002 Ontario Graduate Scholarship Panel
2002 NExTMAC Workshop Panelist
2001-2005 Canadian Mathematics Society Board of Directors
2001 External Reviewer, Memorial University Math Department
1999 Canadian Mathematics Society Endowment Funds Committee
1998-2000 Ontario Graduate Scholarship Panel. Chair in 1999
1998-1999 Chair, Canadian Mathematics Society Task Force on Support of the Mathematics Community
1997-1999 Canadian Mathematics Society Government Policy Committee
1997-1998 Organizing committee for first Canadian Celebration of Women in Mathematics
1992 Ministry of Education Workshop on secondary schools mathematics curriculum

<--break->

Research papers

Papers in refereed journals

(a) Harmonic analysis on compact Lie groups

  • K. Hare and S. Gupta, Characterizing the absolute continuity of the convolution of orbital measures in a classical Lie algebra, accepted by Can. J. Math. (accepted 2015).
  • K. Hare, D. Johnstone, F. Shi and W-K. Yeung, L2-singular dichotomy for exceptional Lie groups and algebras, J. Aust. Math. Soc. 95(2013), 362–382.
  • S. Gupta and K. Hare, Smoothness of convolutions of zonal measures on compact, symmetric spaces, J. Math. Anal. Appl. 402 (2013), 668–678.
  • K. Hare and P. Skoufranis, The smoothness of orbital measures on exceptional Lie groups and algebras, J. Lie Theory 21 (2011), 987–1007.
  • S. Gupta and K. Hare, L2 - singular dichotomy for orbital measures on complex groups, Boll. Un. Math. Ital. (9) 3 (2010), 409–419. 
  • S. Gupta and K. Hare, Smoothness of convolution powers of orbital measures on the symmetric spaces SU(n)/SO(n), Monat. Math. 159 (2010), 27–43
  • S. Gupta and K. Hare, L2 - singular dichotomy for orbital measures of classical compact Lie groups, Adv. Math. 222 (2009), 1521–1573.
  • S. Gupta and K. Hare, Convolutions of generic orbital measures in compact symmetric spaces, Bull. Aust. Math. Soc. 79 (2009), 513–522.
  • S. Gupta, K. Hare and S. Seyfaddini, L2 - singular dichotomy for orbital measures of classical simple Lie algebras, Math. Zeit. 262 (2009), 91–124.
  • S. Gupta and K. Hare, Dichotomy problem for orbital measures of SU(n), Monatsch. Math., 146 (2005), 227–238.
  • K. Hare and K. Yeats, Size of characters of exceptional Lie groups, J. Aust. Math. Soc., 77 (2004), 1–16.
  • D. Grow and K. Hare, Independence of characters on non-abelian groups, Proc. Amer. Math. Soc., 132 (2004), 3641–3651.
  • K. Hare and W-L. Yee, The singularity of orbital measures on compact Lie groups, Rev. Iberoamericana, 20 (2004), 517–530.
  • S. Gupta and K. Hare, Singularity of orbits in classical Lie algebras, Geometric and Functional Analysis, 13 (2003), 815–844.
  • S. Gupta and K. Hare, Singularity of orbits in SU(n), Israel J., 130 (2002), 93–107.
  • K. Hare, D. Wilson and W-L. Yee, Pointwise estimates of the size of characters of compact Lie groups, J. Aust. Math. Soc., 69 (2000), 61–84.
  • K. Hare, The size of characters of compact Lie groups, Studia Math. 129 (1998), 1–18. 

<--break->(b) Fractals and harmonic analysis

  • K. Hare, Self-affine measures that are Lp-improving, accepted by Colloq. Math., 13 pages (ac- cepted 2015).
  • K. Hare, F. Mendivil and L. Zuberman, Packing and Hausdorff measures of Cantor sets associ- ated with series, accepted by Real Anal. Exch., 11 pages (accepted 2015).
  • K. Hare and M. Ng, Hausdorff and packing measure of balanced Cantor sets, accepted by Real Anal. Exch., 12 pages (accepted 2014).
  • C. Bruggeman, C. Mak and K. Hare, Multifractal spectrum of self-similar measures with overlap, Nonlinearity 27 (2014), 227–256.
  • C. Bruggeman and K. Hare, Multi-fractal analysis of convolution powers of measures, Real Anal. Exch. 38 (2012/13), 391–408.
  • K. Hare, F. Mendevil and L. Zuberman, The sizes of rearrangements of Cantor sets, Can. Math. Bull. 56 (2013), 354–365.
  • K. Hare, B. Steinhurst, A. Teplyaev and D. Zhou, Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals, Math. Res. Lett. 19 (2012), 537–553. 
  • P-W. Fong, K. Hare and D. Johnstone, Multifractal analysis for convolutions of overlapping Cantor measures, Asian J. Math. 15 (2011), 53–69.
  • K. Hare and L. Zuberman, Classifying Cantor sets by their multifractal spectrum, Non- Linearity, 23 (2010), 2919–2933.
  • C. Cabrelli, K. Hare and U. Molter, Classifying Cantor sets by their fractal dimensions, Proc. Amer. Math. Soc., 138 (2010), 3965–3974.
  • K. Hare and D. Zhou, Gaps in the ratios of the spectrum of Laplacians on fractals, Fractals 17 (2009), 523–535.
  • K. Hare, P. Mohanty and M. Roginskaya, General energy formula, Math. Scand., 101 (2007), 29–47.
  • M. Allen, G. Cruttwell, J.-O. Ronning and K. Hare, Dimensions of fractals in the large, Chaos, Solitons and Fractals, 31 (2007), 5–13.
  • K. Hare and M. Roginskaya, Lp-Improving properties of measures of positive energy dimension, Colloq. Math., 102 (2005), 73–86.
  • K. Hare and M. Roginskaya, Energy of signed measures, Proc. Amer. Math. Soc., 132 (2004), 397–406.
  • K. Hare and J-O. Ronning, Fractal dimensions of infinite product spaces, Int. J. Pure & App. Math., 14 (2004), 136–169.
  • K. Hare and M. Roginskaya, Multipliers of spherical harmonics and energy of measures on the sphere, Arkiv. Mat., 41 (2003), 281–294.
  • K. Hare and M. Roginskaya, A Fourier series formula for energy of measures with applications to Riesz products, Proc. Amer. Math. Soc., 131 (2003), 165–174.
  • K. Hare and M. Roginskaya, Energy of measures on compact Riemannian manifolds, Studia Math., 159 (2003), 291–314.
  • C. Cabrelli, K. Hare and U. Molter, Sums of Cantor sets yielding an interval, J. Aust. Math. Soc., 73 (2002) 405–418.
  • K. Hare and S. Yazdani, Quasi self-similarity and multifractal analysis of Cantor measures, Real Analysis Exch., 27 (2001/2), 287–307.
  • K. Hare and T. O’Neil, N-Fold Sums of Cantor sets, Mathematika, 47 (2000) 243–250.
  • C. Cabrelli, K. Hare and U. Molter, Sums of Cantor sets, Ergodic Theory and Dynamical systems 17 (1997), 1299–1313. 

<--break->c) Thin Sets

  • K. Hare and T. Ramsey, Exact Kronecker constants of three element sets, accepted by Acta Math. Hung., 19 pages (accepted 2015).
  • K. Hare and T. Ramsey, Kronecker constants of arithmetic progressions, Experimental Math. 23 (2014), 414–422.
  • K. Hare and S. Yamagishi, A generalization of Erd ̋os-Renyi to m-fold sums and differences, Acta Arith. 166 (2014), 55–67. 
  • K. Hare and T. Ramsey, Exact Kronecker constants of Hadamard sets, Colloq. Math. 130 (2013), 39–49.
  • C. Graham and K. Hare, Existence of large ε-Kronecker sets and FFI0(U) sets in discrete abelian groups, Colloq. Math. 127 (2012), 1–15.
  • K. Hare and T. Ramsey, Kronecker constants for finite subsets of integers, J. Fourier Anal. and Applications 18 (2012), 326–366.
  • C. Graham and K. Hare, Characterizations of some classes of I0 sets, Rocky Mtn. J. 40 (2010), 513–525.
  • C. Graham and K. Hare, Sets of zero discrete harmonic density, Math. Proc. Camb. Phil. Soc. 148 (2010), 253–266.
  • D. Grow and K. Hare, Central interpolation sets for compact groups and hypergroups, Glasgow Math. J. 51 (2009), 593–603.
  • C. Graham, K. Hare and T. Ramsey, Union problems for I0 sets, Acta Sci. Math. (Szeged) 75 (2009), 175–195. Corrigendum, Acta Sci. Math. (Szeged) 76 (2010), 487–488.
  • C. Graham and K. Hare, I0 sets for compact, connected groups: Interpolation with measures that are non-negative or of small support, J. Aust. Math. Soc. 84 (2008), 199–215.
  • C. Graham and K. Hare, Characterizing Sidon sets by interpolation properties of subsets, Colloq. Math. 112 (2008), 175–199.
  • C. Graham and K. Hare, ε-Kronecker and I0 sets in abelian groups IV: Interpolation of non- negative measures, Studia Math., 177 (2006), 9–24.
  • C. Graham and K. Hare, ε-Kronecker and I0 sets in abelian groups I: Arithmetic properties of ε-Kronecker sets, Math. Proc. Camb. Phil. Soc., 140 (2006), 475–489.
  • C. Graham, K. Hare and T. Korner, ε-Kronecker sets and I0 sets in abelian groups II: Sparseness of products of ε-Kronecker sets, Math. Proc. Camb. Phil. Soc., 140 (2006), 491–508.
  • C. Graham and K. Hare, ε-Kronecker and I0 sets in abelian groups III: Interpolation of measures on small sets, Studia Math., 171 (2005), 15–32.
  • K. Hare and T. Ramsey, I0 sets in non-abelian groups, Math. Proc. Comb. Phil. Soc., 135 (2003), 81–98.
  • K. Hare, Random weighted Sidon sets, Colloq. Math., 86 (2000), 103–109.
  • K. Hare, Sidonicity in compact, abelian hypergroups, Colloq. Math. 96 (1998), 171–180.
  • K. Hare and D. Wilson, Weighted p-Sidon sets, J. Aust. Math. Soc. 61 (1996), 73–95
  • K. Hare, Central Sidonicity for compact Lie groups, Ann. Inst. Fourier (Grenoble) 45 (1995), 547–564.
  • K. Hare, The support of a function with thin spectrum, Colloq. Math. 67 (1994), 147–154.
  • K. Hare and D. Wilson, Structural criterion for the existence of infinite central (p) sets, Trans. Amer. Math. Soc. 337 (1993), 907–925.
  • K. Hare, Union results for thin sets, Glasgow Math. Journal 32 (1990), 241–254.
  • K. Hare, Strict-2-associatedness for thin sets, Colloq. Math. 56 (1988), 367–381.
  • K. Hare, Arithmetic properties of thin sets, Pac. J. Math. 131 (1988), 143–155. 
  • K. Hare, An elementary proof of a result on ∧(p) sets, Proc. Amer. Math. Soc. 104 (1988), 829–834. 

<--break->(d) Multipliers and Maximal Operators

  • A. Dooley, K. Hare and M. Roginskaya, On Lp-improving measures, accepted by Rev. Iberoamer-icana, 15 pages (accepted 2015).
  • K. Hare and M. Roginskaya, Directional maximal operators with smooth densities, Math. Nachr. 282 (2009), 1740–1752.
  • K. Hare and P. Mohanty, Distinctness of spaces of Lorentz-Zygmund multipliers, Studia Math., 169 (2005), 143-161.
  • K. Hare and F. Ricci, Maximal functions with polynomial densitites in lacunary directions, Trans. Amer. Math. Soc., 355 (2003), 1135–1144.
  • K. Hare and J-O. Ronning, Size of Max(p) sets and density bases, J. Fourier Anal. and Appl., 8 (2002), 259–268.
  • K. Hare and E. Sato, Spaces of Lorentz multipliers, Can. J. Math, 53 (2001), 565–591.
  • K. Hare, Maximal operators and Cantor sets, Can. Math. Bull., 43 (2000), 330–342.
  • K. Hare and J.-O. R ̈onning, Applications of generalized Perron trees to maximal functions and density bases, J. Fourier Anal. and App. 4 (1998), 215–227.
  • K. Hare, A general approach to Littlewood-Paley theorems for orthogonal families, Can. Math. Bull. 40 (1997), 296–308.
  • K. Hare and I. Klemes, On permutations of lacunary intervals, Trans. Amer. Math. Soc. 347 (1995), 4105–4127. (Featured Review in AMS Reviews 95m: 42027)
  • K. Hare and R. Grinnell, Lorentz-improving measures, Illinois J. Math. 38 (1994), 366–389.
  • K. Hare, Tame Lp-Multipliers, Colloq. Math. 64 (1993), 303–314.
  • K. Hare and I. Klemes, A new type of Littlewood-Paley partition, Arkiv for Mat. 30 (1992), 297–307.
  • K. Hare, The Size of (L2,Lp) multipliers, Colloq. Math. 63 (1992), 249–262.
  • K. Hare, Norm one multipliers, Can. Math. Bull. 35 (1992), 194–203.
  • K. Hare, Lp-Improving measures on compact non-abelian groups, J. Aust. Math. Soc. 46 (1989), 402–414.
  • C. Graham, K. Hare and D. Ritter, The size of Lp-improving measures, J. Func. Anal. 84 (1989) 472–495.
  • K. Hare and I. Klemes, Properties of Littlewood-Paley sets, Math. Proc. Camb. Phil. Soc. 105 (1989), 485–494.
  • K. Hare, Properties and examples of (Lp,Lq) multipliers, Indiana Univ. Math. Journal 38 (1989), 211–227.
  • K. Hare, A characterization of Lp-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295–299. 

<--break->e) Miscellaneous Topics

  • S. Gupta and K. Hare, On convolution squares of singular measures, Colloq. Math., 100 (2004), 9–16.
  • K. Hare and A. Stokolos, On weak type inequalities for rare maximal functions, Colloq. Math., 83 (2000), 173–182.
  • K. Hare and J. Ward, Finite dimensional H-invariant spaces, Bull. Aust. Math. Soc. 56 (1997), 353–361.
  • K. Hare and M. Shirvani, The semisimplicity problem for p-adic group algebras, Proc. Amer. Math. Soc. 108 (1990), 653–664.

<--break->

In refereed conference proceedings 

  • K. Hare, Mini-course notes – Multifractal analysis of Cantor-like measures, 15 pages. For CIMPA conference, New Trends in Applied Harmonic Analysis, 2013.
  • K. Hare and A. Stokolos, On the rate of tangential convergence of functions from Hardy spaces, 0 < p < 1, Contemporary Math. 370 (2005), 119–132.
  • K. Hare and N. Tomczak-Jaegerman, Banach space properties of translation invariant subspaces of Lp, Analysis at Urbana 1, London Math. Soc. Lecture Note Series 137, ed. E. Berkson, N. Peck & J. Uhl, Cambridge Univ. Press 1989, 185–195. 

&lt;--break-&gt;Non-Refereed Seminar Proceedings

  • K.Hare,Recent developments in Littlewood-Paley decompositions, Seminaire d’Initiation`al’ Analyse, Publications Math. de l’Universit ́e Pierre et Marie Curie 117, 1994–95, p. 17.1–17.7. 

&lt;--break-&gt;Postdoctoral supervision 

  • Michael (Ka-Shing) Ng, January–April 2015
  • Leandro Zuberman, May 2009–April 2010
  • Denglin Zhou, January 2008–August 2009
  • Parasar Mohanty, September 2003–August 2004
  • Maria Roginskaya, September 2002–August 2003
  • Jan-Olav R ̈onning, September 1995–December 1995 and March 1996–June 1996 

&lt;--break-&gt;

Graduate Supervision 

PhD

  • Robert (Xu) Yang, 2014–present
  • Michael (Ka-Shing) Ng, “Some aspects of Cantor sets”, 2009–2014 (graduated)
  • Denglin Zhou, “Spectral analysis of Laplacians on certain fractals”, 2003–2007 (graduated) 

&lt;--break-&gt;​MMath​

  • Robert (Xu) Yang, “Interpolation sets for compact Abelian groups”, 2013–2014 (graduated)
  • David Farahany, “Multiplier problem for the Ball and the Kakeya maximal operator”, 2012–2013 (graduated)
  • Sheena Tan, “Hadamard, ε-Kronecker and I0 sets in T ”, 2010–2011 (graduated)
  • Vincent Chan, “On convolution squares of singular measures”, 2009–2010 (graduated)
  • Sheldon Stewart, “Construction of a Besicovitch Set”, 2008–2009 (graduated)
  • Pei Pei, “Hausdorff dimension of the random Cantor set”, 2008–2010 (graduated)
  • Keon Choi, “Maximal operators in R2”, 2005–2007 (graduated)
  • Karen Meagher, “Convolution estimates with Orlicz spaces”, 1995–1997 (graduated)
  • Hui Kong, “Riesz Product Measures”, 1991–1992 (graduated)