Current graduate students

Tuesday, June 11, 2024 10:00 am - 11:00 am EDT (GMT -04:00)

Classical Verification of Quantum Learning

CS/Math Seminar Marcel Hinsche from Freie Universität Berlin

Quantum-Nano Centre, 200 University Ave West, Waterloo, ON CA N2L 3G1 ZOOM ONLY

Quantum data access and quantum processing can make certain classically intractable learning tasks feasible. However, quantum capabilities will only be available to a select few in the near future. Thus, reliable schemes that allow classical clients to delegate learning to untrusted quantum servers are required to facilitate widespread access to quantum learning advantages. Building on a recently introduced framework of interactive proof systems for classical machine learning, we develop a framework for classical verification of quantum learning. We exhibit learning problems that a classical learner cannot efficiently solve on their own, but that they can efficiently and reliably solve when interacting with an untrusted quantum prover. Concretely, we consider the problems of agnostic learning parities and Fourier-sparse functions with respect to distributions with uniform input marginal. We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples, based on which we give efficient quantum learning algorithms for these tasks. Moreover, we prove that agnostic quantum parity and Fourier-sparse learning can be efficiently verified by a classical verifier with only random example or statistical query access. Finally, we showcase two general scenarios in learning and verification in which quantum mixture-of-superpositions examples do not lead to sample complexity improvements over classical data. Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents through interaction with untrusted quantum entities.

Wednesday, June 19, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Bruno De Souza Leao Torres

Optimal coupling for local entanglement extraction from a quantum field

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

The entanglement structure of quantum fields is of central importance in various aspects of the connection between spacetime geometry and quantum field theory.  However, it is challenging to quantify entanglement between complementary regions of a quantum field theory due to the formally infinite amount of entanglement present at short distances. We present an operationally motivated way of analyzing entanglement in a QFT by considering the entanglement which can be transferred to a set of local probes coupled to the field. In particular, using a lattice approximation to the field theory, we show how to optimize the coupling of the local probes with the field in a given region to most accurately capture the original entanglement present between that region and its complement. This coupling prescription establishes a bound on the entanglement between complementary regions that can be extracted to probes with finitely many degrees of freedom.

Based on: J. High Energ. Phys. 2023, 58 (2023), arXiv:2301.08775

Wednesday, June 12, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Devashish Tupkary

Security proof of QKD using Entropic Uncertainty relations

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

In this talk, I will describe the use of entropic uncertainty relations in QKD security proofs. I will show how this proof method requires a bound on the classical statistics of the underlying quantum state, and thus ultimately reduces to a sampling problem. I will then describe how the sampling problem is addressed in the literature under certain unphysical assumptions on the QKD hardware. Finally, I will describe how these assumptions can be removed, thereby rendering this proof technique applicable to practical scenarios.

Wednesday, June 12, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Algebraic Methods in Quantum Compiling

IQC Seminar - Sarah Meng Li - University of Amsterdam, Centrum Wiskunde & Informatica (CWI)

Quantum-Nano Centre, 200 University Ave West, Room QNC 0101 Waterloo, ON CA N2L 3G1

: Quantum compiling translates a quantum algorithm into a sequence of elementary operations. There exists a correspondence between certain quantum circuits and matrices over some number rings. This number-theoretic perspective reveals important properties of gate sets and leads to improved quantum compiling protocols. Here, we demonstrate several algebraic methods in quantum circuit characterization and optimization, based on my master’s research at IQC.

First, we design two improved synthesis algorithms for Toffoli-Hadamard circuits, achieving an exponential reduction in circuit size. Second, we define a unique normal form for qutrit Clifford operators. This allows us to find a set of relations that suffice to rewrite any qutrit Clifford circuit to its normal form, adding to the family of number-theoretic characterization of quantum operators.

Tuesday, June 4, 2024 3:00 pm - 4:00 pm EDT (GMT -04:00)

Quantum circuit lower bounds and the role of structure in quantum advantage.

Math/CS Seminar - Joseph Slote, Caltech

ZOOM ONLY

An important challenge in quantum computing is to develop quantum circuit lower bound techniques beyond lightcone arguments. Towards this goal, we examine a circuit model formed from a shallow quantum circuit composed with a classical AC0 circuit and ask whether this model can compute parity. We then bridge ideas from Fourier analysis, info-theoretic cryptography, and nonlocal games to settle this question in several cases. We'll also discuss implications for a search-decision dichotomy in unstructured quantum advantage, a phenomenon that was recently understood in the context of query complexity: for unstructured (promise-free) query problems, exponential quantum advantage can exist for search problems but never for decision problems.

Based on https://arxiv.org/abs/2311.13679.

Wednesday, June 5, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Connor Kapahi

Designing a precision gravitational experiment and budgeting uncertainties

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

Neutrons have a long history at the forefront of precision metrology. Following in the footsteps of the first experiment that measured the effect of gravity on a quantum particle (the C.O.W. experiment), we aim to generate structured neutron momentum profiles and apply these states to measure the gravitational constant, big-G. The significant discrepancy between modern big-G experimental results underscores the need for new experiments whose systematic uncertainties can be decoupled from existing techniques. Previously, perfect-crystal neutron interferometers were used to measure local gravitational acceleration, little-g, unfortunately, the low neutron flux (a few neutrons per second) of these devices makes them impractical for precision measurements of big-G. The recently demonstrated Phase-Grating Moiré Interferometer (PGMI) offers an increase in neutron flux of several orders of magnitude while preserving the large interferometer area, and thus the sensitivity, of a perfect-crystal interferometer. This device possesses a set of systematic uncertainties that are independent from those in existing techniques that measure big-G. In this talk, I will discuss the feasibility of measuring big-G using a neutron PGMI apparatus with a test mass on the order of 1 tonne. Further, I will address how we can optimize this setup to maximize the phase shift from a 1-tonne mass and quantify the various sources of uncertainty in the proposed experiment.

CS/Math Seminar - Amir Arqand, IQC 

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1 In person + ZOOM

The entropy accumulation theorem, and its subsequent generalized version, is a powerful tool in the security analysis of many device-dependent and device-independent cryptography protocols. However, it has the drawback that the finite-size bounds it yields are not necessarily optimal, and furthermore, it relies on the construction of an affine min-tradeoff function, which can often be challenging to construct optimally in practice. In this talk, we address both of these challenges simultaneously by deriving a new entropy accumulation bound. Our bound yields significantly better finite-size performance, and can be computed as an intuitively interpretable convex optimization, without any specification of affine min-tradeoff functions. Furthermore, it can be applied directly at the level of R´enyi entropies if desired, yielding fully-R´enyi security proofs. Our proof techniques are based on elaborating on a connection between entropy accumulation and the frameworks of quantum probability estimation or f-weighted R´enyi entropies, and in the process we obtain some new results with respect to those frameworks as well.

Tuesday, May 21, 2024 3:00 pm - 4:00 pm EDT (GMT -04:00)

Synthesis and Arithmetic of Single Qutrit Circuits

IQC CS/Math Seminar - Amolak Ratan Kalra, University of Waterloo

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

In this talk I will discuss qutrit circuit synthesis over various families of universal gate sets. I will describe a method which relates the question of exact synthesis for both single qubits and single qutrits to the problem of solving a system of polynomial equations mod p.
 

Wednesday, May 22, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Nachiket Sherlekar

Stable and Localized Emission from Ambipolar Dopant-Free Lateral p-n Junctions

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

Combining the architectures of a dopant-free lateral p-n junction and a single-electron pump in a GaAs/AlGaAs heterostructure material system could yield high-rate, electrically-driven quantum emitters with performances surpassing the competition in quantum sensing, communication and cryptography. Observed drawbacks of the dopant-free p-n junctions are a rapid decay in electroluminescence during operation, as well as delocalized emission that lowers the measured quantum efficiency. This talk details novel measurement protocols and gate architectures implemented by us to overcome these challenges.