Variational methods for quantum sensing
Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1
The precise estimation of unknown physical quantities is foundational across science and technology. Excitingly, by harnessing carefully-prepared quantum correlations, we can design and implement sensing protocols that surpass the intrinsic precision limits imposed on classical approaches. Applications of quantum sensing are myriad, including gravitational wave detection, imaging and microscopy, geoscience, and atomic clocks, among others.
However, current and near-term quantum devices have limitations that make it challenging to capture this quantum advantage for sensing technologies, including noise processes, hardware constraints, and finite sampling rates. Further, these non-idealities can propagate and accumulate through a sensing protocol, degrading the overall performance and requiring one to study protocols in their entirety.
In recent work [1], we develop an end-to-end variational framework for quantum sensing protocols. Using parameterized quantum circuits and neural networks as adaptive ansätze of the sensing dynamics and classical estimation, respectively, we study and design variational sensing protocols under realistic and hardware-relevant constraints. This seminar will review the fundamentals of quantum metrology, cover common sensing applications and protocols, introduce and benchmark our end-to-end variational approach, and conclude with perspectives on future research.
[1] https://arxiv.org/abs/2403.02394