Future graduate students

En francais

The Government of Canada has invested nearly $7M into quantum projects at the University of Waterloo through recently announced NSERC Alliance Grants. The grants, awarded by the Natural Sciences and Engineering Research Council of Canada (NSERC), encourage university researchers to collaborate with partner organizations from across the private, public or not-for-profit sectors.

Thursday, March 14, 2024

Quantum Community

En francais

With a focus on collaboration and community, the Institute for Quantum Computing (IQC) is proud to host regular social events for our members. While media and popular culture often portray the image of a lone researcher working late nights in a lab or at a computer to make breakthroughs, the more realistic portrayal of new ideas and discoveries can be encompassed through partnerships and teamwork.

IQC Colloquium/IEEE-SSCS Distinguished Lecture - René-Jean Essiambre, Nokia/Bell Labs

University of Waterloo, 200 University Ave W. Waterloo, QNC 0101

The first part of this presentation will provide a brief overview of optical technologies that enabled high-capacity fiber-optic communication systems, from single-mode fibers to fibers supporting multiple spatial modes. A perspective on the evolution of high-capacity systems will be discussed. The second part of the talk will focus on power-e ciency optical detection systems. More specifically, we will describe an experimental demonstration of a system operating at 12.5 bits/photon with optical clock transmission and recovery on free-running transmitters and receivers.

About René-Jean Essiambre Dr. Essiambre worked in the areas of fiber lasers, nonlinear fiber optics, advanced modulation formats, space-division multiplexing, information theory, and high-photon-e ciency systems. He participated in the design of commercial fiber-optic communication systems where several of his inventions were implemented. He has given over 150 invited talks and helped prepare and delivered the 2018 Physics Nobel Prize Lecture on behalf of Arthur Ashkin. He served on or chaired many conference committees, including OFC, ECOC, CLEO, and IPC. He received the 2005 Engineering Excellence Award from OPTICA and is a fellow of the IEEE, OPTICA, IAS-TUM, and Bell Labs. He was President of the IEEE Photonics Society (2022-2023) and is currently the Past-President (2024-2025).

IQC Colloquium - Daniel Carney, Berkeley Labs

200 University Ave. W. Waterloo Ontario, QNC 0101

The search for new fundamental physics -- particles, fields, new objects in the sky, etc -- requires a relentless supply of more and more sensitive detection modalities. Experiments looking for new physics are starting to regularly encounter noise sources generated by the quantum mechanics of measurement itself. This noise now needs to be engineered away. The search for gravitational waves with LIGO, and their recent use of squeezed light, provides perhaps the most famous example. More broadly, searches for various dark matter candidates, precision nuclear physics, and even tests of the quantization of gravity are all now working within this quantum-limited regime of measurement. In this talk, I will give an overview of this set of ideas, focusing on activity going on now and what can plausibly be achieved within the next decade or so.

En francais

Since 2017, the Quantum Quest Seed Fund (QQSF) has awarded more than $2.88 million to quantum researchers across the University of Waterloo. This winter’s round of funding has been awarded to three Waterloo professors, as they explore and innovate new ideas and applications for quantum devices.

Thursday, February 29, 2024

Quantum LiDAR

En francais

What do you do when your lab space is too small to test the distance requirements for a new long-range sensor and detector in development? Alex Maierean and Luke Neal, graduate students at the Institute for Quantum Computing (IQC) recently navigated this challenge for their latest project.

Their project is looking to advance one application of quantum sensing by incorporating techniques from quantum key distribution into light detection and ranging (LiDAR) sensors. These sensors are commonly used without quantum components for a wide variety of applications, including 3-dimensional imaging for self-driving vehicles, but have a very limited range and require bright laser beams with many photons to take a measurement.

En francais

Federal funding will accelerate quantum startups’ products and solutions for domestic and global markets.

The Government of Canada announced on February 22 it is investing more than $17.2 million in funding through the Regional Quantum Initiative to support startup companies in Southern Ontario’s quantum technology sector, including two companies that have spun out from the University of Waterloo, High Q Technologies Inc., with an investment of $3.7 million and Foqus Technologies Inc., with an investment of $601,975.  

En francais

Researchers from IQC, MIT, and the University of Illinois at Urbana-Champaign have developed a technique for better identification and control of microscopic defects in diamond, as detailed in PRX Quantum, paving the way for the creation of larger qubit systems for enhanced quantum sensing. This breakthrough, led by Alexandre Cooper-Roy, represents a significant advancement in quantum sensing, offering potential revolutionary impacts across various industries and scientific fields.