Experiment looks to increase security in quantum communication
Researchers develop first source of on-demand time-bin entangled photon pairs using quantum dot
Researchers develop first source of on-demand time-bin entangled photon pairs using quantum dot
Nonequilibrium quasiparticles and trapped magnetic flux vortices can significantly impact the performance of superconducting microwave resonant circuits and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing resonator quality factors and qubit lifetimes. Vortices trapped near regions of large microwave currents also contribute excess loss. However, vortices located in current-free areascan actually trap quasiparticles and lead to a reduction in the quasiparticle loss.
Thermodynamics has been highly successful, impacting strongly on the natural sciences and enabling the development of technologies that have changed our lives, from fridges to jet planes. Until recently, it was applied to large systems described by the laws of classical physics. However, with modern technologies miniaturizing down to the nanoscale and into the quantum regime, testing the applicability of thermodynamics in this new realm has become an exciting technological challenge.
Quantum-optical frequency conversion (QFC) provides a method, usually via a nonlinear interaction with an optical ‘pump’ beam, to keep the quantum features of an optical ‘signal’ intact. Most QFC experiments
upconvert near-infrared signal photons to those in the visible or near-visible regime due to the availability of highly-efficient detectors that can be operated at high speeds without incurring a severe noise penalty.
As microelectronics technology nears the end of exponential growth over time, known as Moore’s law, there is a renewed interest in new computing paradigms. I will discuss recent research at UCSB on superconducting quantum bits, as well as our recent start at Google to build a useful quantum computer to solve machine learning problems. A recent experiment will be highlighted that extends the lifetime of a qubit state using quantum error correction.
We introduce an approach to homomorphic encryption on quantum data.
Homomorphic encryption is a cryptographic scheme that allows
evaluations to be performed on ciphertext without giving the evaluator
access to the secret encryption key. Random operations from an finite
abelian unitary group chosen using an encryption key chosen
uniformly at random perform the encryption, and operations that lie
within the centralizer of the encryption group perform the
The Institute for Quantum Computing (IQC) will open its doors to all members of the community as part of Reunion at the University of Waterloo. Bring the whole family to discover the excitement of quantum mechanics and learn about the world-class research that is happening right here in our community!
As Vern Paulsen joins the Institute for Quantum Computing (IQC) and the Department of Pure Mathematics as Professor, the Institute for Quantum Computing now collaborates with a seventh department at the University of Waterloo.
We present a protocol for oblivious-transfer that can be implemented with an optical continuous-variable system, and prove its security in the noisy-storage model. This model assumes that the malicious party has only limited capabilities to store quantum information at one point during the protocol. The security is quantified by a trade-off relation between
Quantum correlations exhibit a variety of non-classical features, which include quantum entanglement, quantum steering, and quantum discord. Such richness and diversity of quantum features calls for meaningful and quantitative approaches to their study. In this talk I will illustrate how it is possible to exploit techniques and insight from convex optimization, especially from semidefinite programming, to provide an operational quantification and interpretation of all the above aspects of the quantumness of correlations.