Alessandro Cosentino: Limitations on separable measurements by convex optimization
Alessandro Cosentino, IQC
I will discuss some new results we have recently obtained for the
problem of quantum states discrimination by Local Operations and
I will discuss some new results we have recently obtained for the
problem of quantum states discrimination by Local Operations and
Join us for the next Quantum Frontiers Distinguished Lecture Series when Dr. Alain Aspect will talk about the weirdness of wave particle duality.
Nanowires offer exciting opportunities in quantum optics. Using quantum dots in semiconducting nanowires, we demonstrate the generation of single photons as well as pairs of entangled photons. Making electrical contacts to semiconducting nanowires, we make a single quantum dot LED where electroluminescence from a single quantum dot can be studied. Similar devices operated as photodiodes enable the operation of single nanowire avalanche photodiodes.
Quantum information is a very valuable, but also very fragile resource.
In this talk I want to present progress of our quantum optics laboratory. Our laboratory was built in the summer 2013. During the past year we've performed number of beautiful experiments. One of the featured experiments is "Quantum vampire" which demonstrates non-local properties of the annihilation operator. This beautiful effect predicts that if you take particular number of photons from the part of the light beam there will be now shadow.
1- Photon number discrimination without photon counting (theory and experiment)
The chromatic number of a graph has a description as the classical value of a three-person game. If instead one plays a quantum version of this game, then this yields a smaller value--the quantum chromatic number of the graph. However, using the Algebraic Quantum Field Theory (AQFT) model could yield a larger set of quantum correlations, and a different value for the quantum chromatic number.
The conventional electronic devices such as personal computers and mobile phones are primarily based on the control of electron charge in semiconductors. Although the tremendous progress in micro-fabrication technologies has accelerated the miniaturization of electronic devices, the size of devices will soon encounter the fundamental physical limits of that miniaturization. Further scale reduction beyond these limits will require a radical alteration of the concept of functional devices.
The conventional electronic devices such as personal computer and mobile phones are primarily based on the control of electron charge in semiconductors. Although the tremendous progress in micro-fabrication technologies has accelerated the miniaturization of electronic devices, the size of devices will soon encounter the fundamental physical limits of that miniaturization. Further scale reduction beyond these limits will require a radical alteration of the concept of functional devices.