Exploring Synthetic Quantum Matter in Superconducting Circuits

Friday, February 22, 2019 10:30 am - 10:30 am EST (GMT -05:00)

Alex Ruichao Ma, University of Chicago

Superconducting circuits have emerged as a competitive platform for quantum computation, satisfying the challenges of controllability, long coherence and strong interactions. Here we apply this toolbox to the exploration of strongly correlated quantum materials made of microwave photons. We develop a versatile recipe that uses engineered dissipation to stabilize many-body phases, protecting them against intrinsic photon losses. We build a strongly interacting Bose-Hubbard lattice in circuits and applied our dissipative stabilization method to create a Mott insulator of photons. Site- and time-resolved microscopy provides insights into the thermalization processes through the dynamics of defects in the Mott phase. In another experiment, we realize a superconducting Chern insulator constructed from tunnel-coupled, time-reversal broken microwave cavities and study its topologically protected edge states. Our work demonstrates the power of superconducting circuits for studying synthetic quantum matter in both coherent and driven-dissipative settings. I will briefly discuss future prospects including microscopic studies of strongly interacting topological phases and quantum thermodynamics.