IQC Student Seminar Featuring Shlok Nahar

Tuesday, August 1, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

Time-resolved Quantum Key Distribution using Semiconductor Quantum Dots with Oscillating Photonic States

Quantum dot-based entangled photon sources are promising candidates for quantum key distribution (QKD), as they can in principle emit deterministically, with high brightness and low multiphoton contribution. However, quantum dots (QD) often inherently possess a fine structure splitting (FSS). Since the entangled photonic state in the presence of non-zero FSS is oscillating, one must settle for a lower efficiency source through temporal post-selection or a lower measured entanglement fidelity. In both cases, the overall key rate is reduced. Our QKD analysis shows that this trade-off can be overcome by constructing a time-resolved QKD protocol where all photon pairs emitted by a QD with non-zero FSS can be used in secret key generation. This protocol works only when the detection system's temporal resolution is much smaller than the FSS period. By implementing our protocol, higher key rates can be achieved as compared to previous QKD experiments with QD entangled photon pair sources.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo