Semiconductor spin qubits for quantum networking

Monday, May 27, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Semiconductor spin qubits for quantum networking

IQC Colloquium - Akira Oiwa, Osaka University - PLEASE NOTE ROOM CHANGE TO 1501

Semiconductor spin qubits are well recognized as a promising platform for scalable fault-tolerant quantum computers (FTQCs) because of relatively long spin coherence time in solid state devices and high-electrical tuneability of the quantum states [1]. In addition, semiconductors have a great potential for applications in quantum communications because of their abilities in optical devices. Therefore, especially in quantum repeater applications, the semiconductor spin qubits provide a route to efficiently connect qubit modules or quantum computers via optical fibers and construct global quantum networks, contributing to realize secure quantum communications and distributed quantum computing [2]. In this talk, we present the physical process enabling the quantum state conversion from single photon polarization states to single electron spin states in gate-defined quantum dots (QDs) and its experimental demonstration [3]. As recent significant achievements, we discuss that the enhancement of the conversion efficiency from a single photon to a single spin in a quantum dot using photonic nanostructures [4]. Finally, we present a perspective of high conversion efficiency quantum repeater operating directly at a telecom wavelength based on semiconductor spin qubits.

[1] G. Burkard et al., Rev. Mod. Phys. 95, 025003 (2023). [2] A. Oiwa et al., J. Phys. Soc. Jpn. 86, 011008 (2017); L. Gaudreau et al., Semicond. Sci. Technol. 32, 093001 (2017). [3] T. Fujita et al., Nature commun. 10, 2991 (2019); K. Kuroyama et al., Phys. Rev. B 10, 2991 (2019). [4] R. Fukai et al., Appl. Phys. Express 14, 125001 (2021); S. Ji et al., Jpn. J. Appl. Phys. 62, SC1018 (2023).

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo