Towards scalable yet high-fidelity quantum processors

Friday, August 26, 2022 10:00 am - 11:00 am EDT

Towards scalable yet high-fidelity quantum processors

Felix Motzoi - Jülich Research Centre

In the NISQ era of quantum computing, as system sizes are progressively increasing, there are major concerns about the degradation of performance with increasing complexity. These can largely be reduced to the problems of crosstalk and correlations between system components, of fabrication uncertainties and drift in system parameters, and of multi-parameter optimization across multi-qubit state spaces in a fixed uptime duty cycle. In this presentation, we address inroads towards a more comprehensive, scalable approach for control theoretic solutions to maintaining (given architecture) performance that encompasses: a method to incorporate arbitrary couplings into an effective Hamiltonian frame with superexponential speedup compared to standard perturbative approaches [B. Li, T. Calarco, F. Motzoi, PRX Quantum 3, 030313 (2022)]; a control theoretic approach to tracking uncertainties in quantum circuits giving tight error bounds [M. Dalgaard, C. Weidner, F, Motzoi - Phys. Rev. Lett. 128, 150503 (2022)]; and a machine learning framework for symbolic optimization given particular Hamiltonian and associated uncertainties with a single meta-optimization permitting simultaneous tuneup of all qubits within the architecture belonging to the same class of Hamiltonians [F. Preti, T. Calarco, F. Motzoi, arXiv:2203.13594 (2022)].


Add event to calendar

Apple   Google   Office 365   Outlook   Yahoo