IQC Student Seminar featuring Sonell Malik
All-optic fine structure splitting eraser
Reliable entangled photon sources are important for testing fundamentals in quantum mechanics, achieving secure quantum key distribution, among other things. Quantum dots are a hot topic for precisely this need of the scientific community. Quantum dots act as artificial atoms by confining electrons and holes in wells. They emit polarization entangled photons in an exciton-biexciton cascade. The expected entangled state from the cascade is
The confining potential of these wells can be asymmetric which causes fine structure splitting in the intermediate energy level of the cascade.
The presented work offers a way to achieve perfectly entangled photon pairs with quantum dots in vertical nanowires, on demand and with a high count rate. Fine structure splitting is seen in all quantum dot systems whether they are quantum dots in nanowires, micropillars, or, self-assembled quantum dots. This proposal is universal because it can be used to compensate for energy dependent entanglement degradation in all entangled photon sources.
The fine structure splitting in the dot leads to a difference in energy of the photons in different polarizations. This renders the quantum dot system less effective for quantum key distribution applications. Therefore, countering fine structure splitting is highly desirable.
This talk will discuss the approach taken in Quantum Photonic Devices lab to counter the fine structure splitting.