Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, July 3, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Lars Kamin

Weight estimation for optical detection setups

QNC building, 200 University Ave. Room 1201, Waterloo 

Realistic models of optical detection setups are crucial for numerous quantum information tasks. For instance, squashing maps allow for more realistic descriptions of the detection setups by accounting for multiphoton detections. To apply squashing maps, one requires a population estimation of multiphoton subspaces of the input to the detection setup. So far, there has been no universal method for those subspace estimations for arbitrary detection setups.

We introduce a generic subspace estimation technique applicable to any passive linear optical setup, accounting for losses and dark counts. The resulting bounds are relevant for adversarial tasks such as QKD or entanglement verification. Additionally, this method enables a generic passive detection setup characterization, providing the necessary measurement POVM for e.g. QKD security proofs.

Thursday, July 4, 2024 10:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Optomechanics Tutorial

Professor Brad Hauer, Institute for Quantum Computing

QNC building, 200 University Ave. Room 0101, Waterloo 

Join new IQC faculty member Professor Brad Hauer for a tutorial on quantum optomechanics and a preview of new research directions at IQC. This tutorial is designed for the USEQIP program to be accessible to advanced undergraduates, and all IQC members are welcome (no registration required).

Cavity optomechanics, which studies the interplay between confined electromagnetic fields and mechanical motion, has seen a flurry of activity over the past two decades. In particular, optomechanical devices have had great success in preparing, manipulating, and observing quantum states of motion in nanoscale mechanical resonators. With applications in quantum information and quantum sensing on the horizon, cavity optomechanical devices remain an exciting prospect for real-world quantum technologies, as well as probes of important physical quantities on both microscopic and cosmological scales.

In my tutorial, I will provide a brief overview of cavity optomechanics, describing both the theoretical fundamentals and physical implementations. Following this introduction, I will detail a number of recent experiments realizing quantum effects in mesoscale mechanical resonators, including ground state cooling and entanglement of their motion. I will also discuss how cavity optomechanics is being used to further our understanding of the universe through next-generation dark matter and gravity wave detectors. Finally, I will briefly discuss my own research studying newly developed mm-wave optomechanical circuits and how I plan to use these devices to continue advancing the field.

Monday, July 8, 2024 10:30 am - 11:30 am EDT (GMT -04:00)

Quantum computational advantage in simulating many-body spin dynamics

IQC Colloquium - Dr. Chae-Yeun Park, Xanadu

QNC building, 200 University Ave. Room QNC 1201 Waterloo 

Understanding the dynamics of quantum many-body systems is one of the fundamental objectives of physics. The existence of an efficient quantum algorithm for simulating these dynamics with reasonable resource requirements suggests that this problem might be among the first practically relevant tasks quantum computers can tackle. Although an efficient classical algorithm for simulating such dynamics is not generally expected, the classical hardness of many-body dynamics has been rigorously proven only for certain commuting Hamiltonians. In this talk, I will show that computing the output distribution of quantum many-body dynamics is classically difficult, classified as #P-hard, also for a large class of non-commuting many-body spin Hamiltonians. Our proof leverages the robust polynomial estimation technique and the #P-hardness of computing the permanent of a matrix. By combining this with the anticoncentration conjecture of the output distribution, I will argue that sampling from the output distribution generated by the dynamics of a large class of spin Hamiltonians is classically infeasible. Our findings can significantly reduce the number of qubits required to demonstrate quantum advantage using analog quantum simulators.

Monday, July 8, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Quantum compiler: quantum circuit synthesis using optimal control theory

IQC Special seminar - Sahel Ashhab, National Institute of Information and Communications, Japan

QNC building, 200 University Ave. Room 1201, Waterloo 

We use numerical optimal-control-theory methods to determine the minimum number of two-qubit CNOT gates needed to perform quantum state preparation and unitary operator synthesis for few-qubit systems. In the first set of calculations, we consider all possible gate configurations for a given number of qubits and a given number of CNOT gates, and we determine the maximum achievable fidelity for the specified parameters. This information allows us to identify the minimum number of gates needed to perform a specific target operation. It also allows us to enumerate the different gate configurations that can be used for a perfect implementation of the target operation. We find that there are a large number of configurations that all produce the desired result, even at the minimum number of gates. This last result motivates the second set of calculations, in which we consider only a small fraction of the super-exponentially large number of possible gate configurations for an increasing number of qubits. We find that the fraction of gate configurations that allow us to achieve the desired target operation increases rapidly as soon as the number of gates exceeds the theoretical lower bound for the required number of gates. As a result, a random search can be a highly efficient approach for quantum circuit synthesis. Our results demonstrate the important role that numerical optimal control theory can play in the development of quantum compilers.

Tuesday, July 9, 2024 - Wednesday, July 10, 2024 (all day)

QuDits for Quantum Technology Workshop

QNC building, 200 University Ave. Room 0101, Waterloo 

This workshop focuses on encoding quantum information in more than two states.

The main theme is to go beyond binary encodings: from quBits to quDits, where D > 2.

Now is a very interesting time, as we see a lot of experimental progress and new possibilities in this area. This workshop brings together researchers  – both experimentalists and theorists – to explore quDit-based applications in all areas of quantum technology.

Tuesday, July 9, 2024 3:00 pm - 4:00 pm EDT (GMT -04:00)

Characterizing quantum bilocal network scenario with generalized NPA hierarchies

IQC CS/Math Seminar, Xiangling Xu INRIA Saclary

QNC building, 200 University Ave. Room 1201, Waterloo 

 

Characterizing quantum correlations is a fundamental task in the study of quantum information theory. In the standard Bell scenario, where the correlations are established by a single source, the seminal work [Navascúes et al., 2008] presents a convergent hierarchy that provides an outer approximation, which can be formulated as a problem solvable by computers.

In the more general networks scenarios, however, the correlations are due to multiple independent quantum sources. This necessitates a generalization of the NPA hierarchy. Based on [Renou, Xu, Ligthard, 2022], this talk focuses on the simplest quantum network, the bilocal scenario, where two independent quantum sources exist: one shared between Alice and Bob, and the other between Bob and Charlie. It will discuss two convergent generalizations of the NPA hierarchy in this context, demonstrating that the bilocal scenario is completely understood from the algebraic/Heisenberg perspective.

Despite this progress, the characterization of quantum networks beyond the bilocal scenario remains an open question. This talk will introduce a possible approach, the inflation-NPA hierarchy, as a potential solution. The aim is to motivate the audience to explore this important and challenging problem further.

Wednesday, July 10, 2024 11:45 am - 12:45 pm EDT (GMT -04:00)

Security implications of device imperfections in quantum key distribution

IQC Special Seminar, Jerome Wiesemann, Fraunhofer Heinrich Hertz Institute HHI

Quantum key distribution (QKD) is on the verge of becoming a robust security solution, backed by security proofs that closely model practical implementations.  As QKD matures, a crucial requirement for its widespread adoption is establishing standards for evaluating and certifying practical implementations, particularly against side-channel attacks resulting from device imperfections that can undermine security claims. Today, QKD is at a stage where the development of such standards is increasingly prioritized. This works aims to address some of the challenges associated with this task by focusing on the process of preparing an in-house QKD system for evaluation. We first present a consolidated and accessible baseline security proof for the one-decoy state BB84 protocol with finite-keys, expressed in a unified language. Building upon this security proof, we identify and tackle some of the most critical side-channel attacks by characterizing and implementing countermeasures both in the QKD system and within the security proof. In this process, we iteratively evaluate the risk of the individual attacks and re-assess the security of the system. Evaluating the security of QKD systems additionally involves performing attacks to potentially identify new loopholes. Thus, we also aim to perform the first real-time Trojan horse attack on a decoy state BB84 system, further highlighting the need for robust countermeasures. By providing a critical evaluation of our QKD system and incorporating robust countermeasures against side-channel attacks, our research contributes to advancing the practical implementation and evaluation of QKD as a trusted security solution.

Wednesday, July 17, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Evan Peters

Improving information transmission using correlated auxiliary noise

QNC building, 200 University Ave. Room 1201, Waterloo 

Communicating information is a fundamentally important task that is often limited by noise. The physical origin of noise in a quantum channel is an interaction between the transmitted system and its surrounding environment. This interaction leads to correlations between the system and its environment that contain information about the original state, but are inaccessible to the receiver. However, a receiver may be able to recover some of this lost information if they are given access to an additional auxiliary system that interacts with the environment. In this talk, I will formalize a particular type of receiver side information and characterize the resulting improvement in classical and quantum channel capacities for an augmented bit flip channel. I will then discuss information-theoretic bounds on imperfect one-time pad cryptography schemes and passive environment-assisted quantum channel capacities.

Wednesday, July 17, 2024 2:00 pm - 4:00 pm EDT (GMT -04:00)

An introduction to analyzing cryptographic protocols using Taramin prover

Douglas Stebila, University of Waterloo

QNC building, 200 University Ave. Room 1201, Waterloo 

This workshop will provide an introduction to the Tamarin prover, which is a security protocol verification tool that analyzes cryptographic protocols in a symbolic model and can automatically identify attacks or conclude that certain classes of attacks do not exist. The workshop will include a hands-on exercise using the Tamarin prover.

To attend this program please email us at cryptoworks21@uwaterloo.ca by July 16, 2024.