Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, November 2, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Jose Polo Gomez

Measuring quantum fields with particle detectors and machine learning

Abstract: The model for measurements used in quantum mechanics (based on the projection postulate) cannot be extended to model measurements of quantum fields, since they are incompatible with relativity. We will see that measurements performed with particle detectors (i.e., localized non-relativistic quantum systems that couple covariantly to quantum fields) are consistent with relativity, and that they allow us to build a consistent measurement theory for QFT. For this measurement framework to be of practical use, we need to understand how can we measure specific properties of the field using a particle detector. I will show that there is a simple fixed measurement protocol that allows us to extract essentially all the information about the field that the detector gathers, and that this information can then be interpreted to study a specific targeted feature using machine learning techniques. Specifically, I will examine two examples in which we use a neural network to extract global information about the field (boundary conditions and temperature) performing local measurements, taking advantage of the fact that this global information is stored locally by the field, albeit in a scrambled way.

Wednesday, November 2, 2022 3:30 pm - 4:30 pm EDT (GMT -04:00)

Quasiparticle effects in transmons with gap-asymmetric junctions

Seminar featuring Giampiero Marchegiani - Technology Innovation Institute, Abu Dhabi

Single-particle excitations, known as Bogoliubov quasiparticles, threaten the operation of superconducting qubits. In this presentation, we theoretically revisit and generalize the qubit-quasiparticle interaction, including the gap asymmetry in Josephson junctions, which naturally arises from the deposition of aluminum layers with different thicknesses. ...

Thursday, November 10, 2022 3:30 pm - 4:30 pm EST (GMT -05:00)

SYNTHESIS: QUANTUM RESERVOIR COMPUTING, MACHINE LEARNING, AND ASTROMETRY.

IQC Seminar featuring Dr. Stephen Vintskevich

There are multiple challenging issues one must address to boost further the nascent field of quantum technologies. The most common are reducing noises’ affection on a given quantum protocol’s performance, performing well-controlled quantum operations, and developing general frameworks for mapping various practical problems into quantum algorithms performed in different quantum devices. ...

Wednesday, November 16, 2022 12:00 pm - 1:00 pm EST (GMT -05:00)

IQC Student Seminar featuring an Impromptu Poster Session

Impromptu Poster Session

Please join us for the IQC Student Seminar on Wednesday Nov 16 at noon. This week’s seminar will take place in the form of an impromptu poster session, where students joining will be divided into groups and discuss each other's current work using the whiteboard. This is to encourage students to talk about their work in progress, while practicing communication skills by presenting to non-experts. It's also a great way to learn how big the field of quantum research is!

Thursday, November 17, 2022 4:00 pm - 5:00 pm EST (GMT -05:00)

Quantum State Characterization for Benchmarking NISQ Devices

ZOOM online Seminar Featuring Ahmad Farooq, Ph.D. - Kyung Hee University

Reliable and efficient reconstruction of the quantum states under the processing of noisy measurement data is a vital tool in fundamental and applied quantum information sciences owing to communication, sensing, and computing. Noisy intermediate-scale quantum (NISQ) computers are expected to perform tasks that surpass the capability of the most powerful classical computers available today. ...

Wednesday, November 23, 2022 12:00 pm - 1:00 pm EST (GMT -05:00)

IQC Student Seminar featuring an Impromptu Poster Session

Impromptu Poster Session

Please join us for the IQC Student Seminar on Wednesday Nov 23 at noon. This week’s seminar will take place in the form of an impromptu poster practice session, where students will discuss interesting research on the whiteboard. This is to encourage students to talk about their work in progress, while practicing communication skills by presenting to non-experts. It's also a great way to learn how big the field of quantum research is! No prior preparation is necessary.

As always, pizza lunch will be provided to attendees.

Monday, November 28, 2022 2:30 pm - 3:30 pm EST (GMT -05:00)

quDit entanglement from coherent states by Kerr nonlinearity

IQC Colloquium featuring Professor Jaewan Kim, Professor/Vice-President of Korea Institute for Advanced Study (KIAS), President of Quantum Information Society of Korea (QisK)

A coherent state can be interpreted as a superposition of pseudo-number states with equal weight. Using cross-Kerr nonlinearity two coherent states can be made into a maximal entanglement of pseudo-number states and pseudo-phase states. Some applications of the entanglements of pseudo-number/phase states, such as quDit teleportations, will be discussed.

Wednesday, November 30, 2022 12:00 pm - 1:00 pm EST (GMT -05:00)

IQC Student Seminar featuring Amolak Ratan Kalra

Categories of Kirchoff Relations

Abstract: I will be talking about the connections between electrical circuits and stabilizer qudit quantum circuits with an eye towards applications to qudit quantum error correction. More formally I will be defining a category dubbed Kirchhoff relations and characterize the maps in this category using parity check matrices. I will then go on to give a universal set of generators for this category and interpret these generators in-terms of electrical elements.

This is work in progress.

The main technical reference is the following paper: https://arxiv.org/pdf/2205.05870.pd