Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

IQC Colloquium on ZOOM - Mark Zhandry, NTT Research

Public verification of quantum money has been one of the central objects in quantum cryptography ever since Wiesner's pioneering idea of using quantum mechanics to construct banknotes against counterfeiting. In this talk, I will discuss some recent work giving both attacks and new approaches to building publicly verifiable quantum money.

Wednesday, April 26, 2023 11:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Matters Seminar Series: No, you have not discovered a Majorana Fermion

No, you have not discovered a Majorana Fermion

Abstract: Is what I tell myself. There was a time when I thought I may have discovered it, others did too. Around 2012 several groups including ours found evidence of these quantum excitations in electrical circuits containing nanowires of semiconductor covered by a superconductor. The dramatic signatures were peaks in conductance that appeared under conditions expected from theory for Majorana modes, which are their own anti-modes and may possess non-Abelian properties. But a few years later, similar features in the data were identified due to an interesting, but a more mundane effect - which we call trivial states such as Andreev bound states. Over time more and more data pointed at the trivial and not at the exotic explanation. But because Majorana claims kept coming, this led to some digging and even retractions. What we learned after 10 years is that we have a much better handle on what effects show up in these nanowires, which positions us well for the ultimate Majorana discovery which we should be able to tell apart from all the non-Majorana things we saw. The second lesson we learned is that materials quality of device constituents, superconductors and semiconductors, as well as how samples are fabricated - are the make-or-break factors for making this happen. So while  I cannot report an exciting physics discovery, I can walk you through the scientific process that took place, a 10-year event of independent value which taught me how to do science better.

Thursday, April 27, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Today: Quantum Energy Teleportation – Activating Ground State Energy

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

Monday, May 15, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Quantum thermal machines at strong coupling

IQC Colloquium - Dvira Segal, University of Toronto

Rethinking the operation principles of thermal machines in the nanoscale and quantum domain, we focus on a continuous machine operating in steady state, the quantum absorption refrigerator (QAR), and examine three key questions: (i) How does the strong system-bath interaction affect the device's operation? (ii) What can we learn about the machine from current noise? (iii) What is the impact of coherences within the working fluid on the performance of the quantum machine? 

Monday, June 26, 2023 10:00 am - 11:00 am EDT (GMT -04:00)

Jack Davis PhD Thesis Defence

Wigner negativity on the sphere

The rise of quantum information theory has largely vindicated the long-held belief that Wigner negativity is an indicator of genuine nonclassicality in quantum systems.  This thesis explores its manifestation in spin-j systems using the spherical Wigner function.  Common symmetric multi-qubit states are studied and compared.  Spin coherent states are shown to never have vanishing Wigner negativity.  Pure states that maximize negativity are determined and analyzed using the Majorana stellar representation.  The relationship between negativity and state mixedness is discussed, and polytopes characterizing unitary orbits of lower-bounded Wigner functions are studied.  Results throughout are contrasted with similar works on symmetric state entanglement and other forms of phase-space nonclassicality.

Monday, July 17, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Simulation, control and sensing in open quantum systems

IQC Colloquium - Nir Bar-Gill, Applied Physics and Physics, The Hebrew University

In this talk I will address these topics through the platform of nitrogen-vacancy (NV) spins in diamond, in the context of purification (or cooling) of a spin bath as a quantum resource and for enhanced metrology and sensing.

Wednesday, July 19, 2023 10:00 am - 11:00 am EDT (GMT -04:00)

Quantum-enhanced communication and sensing in quantum network: theory and experiment.

IQC Seminar - Yujie Zhang, University of Illinois at Urbana-Champaign

A global quantum network stands at the frontier of the ongoing technological revolution and has led to both theoretical discussion on designing new network quantum protocols, and experimental works in their implementation.  In this talk, we will explore applications of the quantum network with novel theoretical proposals and their table-top experimental demonstrations including quantum enhanced multiple-access communications and astronomical sensing with quantum telescopy.

Friday, August 4, 2023 9:30 am - 10:30 am EDT (GMT -04:00)

Pei Jiang Low PhD Thesis Defence

Control and Readout of High-Dimensional Trapped Ion Qudits

The trapped ion platform is one of the quantum computing platforms that is at the forefront for realizing large-scale quantum information processing, which is crucial for practically actualizing the advantages of quantum algorithms. Scaling up the trapped ion quantum computing architecture remains a challenge. We explore an alternative avenue in a trapped ion system for increasing the computational Hilbert space other than trapping more ions, which is by increasing the qudit dimension of an ion. Our ion of choice is 137Ba+, which has a rich energy level structure for high-dimensional qudit encoding. Utilizing the additional energy states found in 137Ba+ also comes with non-trivial complexities that require careful considerations, which we have solved and report in this work. We report on a single-shot state measurement protocol which allows qudit encoding in 137Ba+ of up to 25 levels, and demonstrate state preparation and measurement of up to 13 levels, which is unprecedented in a trapped ion system. This PhD defense presentation also covers some other interesting topics within the thesis, which include our experimental setup, barium ion loading via laser ablation, and detailed studies of some experimental observations that may not be intuitively clear.

Wednesday, August 9, 2023 2:00 pm - 3:00 pm EDT (GMT -04:00)

Brendan Bramman PhD Thesis Defence

Ablation Loading and Qudit Measurements with Barium Ions

Barium is one of the best ions for performing quantum information in a trapped-ion system. Its long-lived metastable D5/2 state allows for some interesting quantum operations, including the current best state preparation and measurement fidelity in qubits. This metastable state also opens up the possibility of implementing higher dimensional qudits instead of qubits. However, installing a barium metal source in a vacuum chamber has shown to be somewhat of a challenge. Here, we present a loading technique which uses a barium chloride source instead, making it much easier to install. Laser ablation with a high-energy pulsed laser is used to generate neutral atoms, and a two-step photoionization technique is used to selectively load different isotopes of barium in our ion trap. The process of laser ablation and the plume of atoms it generates are characterized, informing us on how to best load ions. Loading is achieved, and selectivity of our method is demonstrated, giving us a reliable way to load ba138 and ba137 ions. The quadrupole transition into the metastable D5/2 state is investigated, with all of the individual transitions successfully found and characterized for ba138 and ba137. Coherent operations are performed on these transitions, allowing us to use them to define a 13-level qudit, on which we perform a state preparation and measurement experiment. The main error source in operations using this transition is identified to be magnetic field noise, and so we present attempts at mitigating this noise. An ac-line noise compensation method is used, which marginally improved the coherence time of the quadrupole transitions, and an additional method of using permanent magnets is proposed for future work. These efforts will help to make trapping barium more reliable, making it an even more attractive option for trapped ion systems. The state preparation and measurement results using the quadrupole transition to the long-lived metastable D52 state establish barium as an interesting platform for performing high-dimensional qudit quantum computing.