Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, December 14, 2015 2:30 pm - 2:30 pm EST (GMT -05:00)

Jamie Sikora: Quantum Correlations: Dimension Bounds and Conic Formulations

Jamie Sikora, Centre for Quantum Technologies, National University of Singapore

In this talk, I will discuss correlations that can be generated by performing local measurements on bipartite quantum systems. I'll present an algebraic characterization of the set of quantum correlations which allows us to identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a quantum correlation. I will then discuss some examples showing the tightness of our lower bound.

Wednesday, December 16, 2015 1:00 pm - 1:00 pm EST (GMT -05:00)

Seminar: Edward Chen

Nitrogen-vacancy (NV) centers in diamond nanophotonic structures for quantum networking

Edward Chen, Massachusetts Institute of Technology

The exceptional optical and spin properties of the negatively charged nitrogen-vacancy (NV) center in diamond have led to a wide range of hallmark demonstrations ranging from super-resolution imaging to quantum entanglement, teleportation, and sensing. The solid-state environment of the NV allows us to engineer nano-structures that can enhance the properties of the NV and improve the readout and initialization fidelities of the spin.

Monday, January 4, 2016 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Shalev Ben-David

Separations in query complexity using cheat sheets

Shalev Ben-David, Massachusetts Institute of Technology (MIT)

We show a power 2.5 separation between bounded-error randomized and quantum query complexity for a total Boolean function, refuting the widely believed conjecture that the best such separation could only be quadratic (from Grover's algorithm). We also present a total function with a power 4 separation between quantum query complexity and approximate polynomial degree, showing severe limitations on the power of the polynomial method.

Tuesday, January 26, 2016 1:30 pm - 2:30 pm EST (GMT -05:00)

Seminar: Shun Kawakami

Security of differential quadrature phase shift quantum key distribution

Shun Kawakami, University of Tokyo

One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer.

Thursday, January 28, 2016 10:00 am - 10:00 am EST (GMT -05:00)

Seminar: Hakop Pashayan

Estimating outcome probabilities of quantum circuits using quasiprobabilities

Hakop Pashayan, The University of Sydney

We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation.

Monday, February 8, 2016 1:00 pm - 1:00 pm EST (GMT -05:00)

Seminar: Dorian Gangloff

Nanocontacts atom-by-atom with a friction emulator

Dorian Gangloff, Massachusetts Institute of Technology

Friction is the basic, ubiquitous mechanical interaction between two surfaces that results in resistance to motion and energy dissipation. To test long-standing atomistic models of friction processes at the nanoscale, we implemented a synthetic nanofriction interface using laser cooled ions subject to the periodic potential of an optical standing wave.

Monday, February 8, 2016 4:00 pm - 4:00 pm EST (GMT -05:00)

Seminar: Aye Lu Win

Catalysis of Stark-tuned Interactions between Ultracold Rydberg Atoms

Aye Lu Win, Old Dominion University

The strong long-range interaction between ultracold Rydberg atoms gives rise to a number of interesting phenomena that have been studied in recent years including resonant energy transfer collisions, many-body quantum simulations, quantum information processing, and ultracold plasmas. The dipole-dipole interaction between a pair of Rydberg atoms can result in a state-changing interaction if the energy defect for the process is small.

Friday, February 12, 2016 11:00 am - 11:00 am EST (GMT -05:00)

Seminar: Boris Braverman

Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

Boris Braverman, Massachusetts Institute of Technology

State of the art optical lattice atomic clocks have reached a relative
inaccuracy level of order $10^{-18}$, making them the most stable time
references in existence.