Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, September 12, 2017 11:00 am - 11:00 am EDT (GMT -04:00)

Self-testing QRNG: A lot of randomness for little trust!

Hugo Zbinden, Université de Genève

An approach to quantum random number generation based on unambiguous quantum state discrimination (USD) is developed. We consider a prepare-and-measure protocol, where two non-orthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them.

Tuesday, September 12, 2017 12:00 pm - 12:00 pm EDT (GMT -04:00)

Seminar: Quantum Walks Gravity Simulation

Giuseppe Di Molfetta, University of Marseille

As we know, spacetime is not flat at the cosmological scale. In order to describe spacetime, in General Relativity theory (GR), we need a continuous and differentiable manifold and a formal way to account for the continuous distortion of the metrics. The main point is that changing coordinate systems should not affect physics laws (General Covariance). However at the Planck length, matter is not continuous and obeys Quantum Theory (QT).

Tuesday, September 12, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Seminar: Successes and limits in engineering photon pair sources

Evan Meyer-Scott, Universität Paderborn 

I will present a realization of a great photon pair source based on parametric down-conversion, and discuss a not-so-great limit to the performance of photon pair sources in general. The former is a fully fiber-coupled waveguide pair source with 46% raw heralding efficiency, and no optical alignment required. The latter restricts the achievable heralding efficiency, when spectrally filtering the photons to increase the purity.

Monday, September 25, 2017 11:00 am - 11:00 am EDT (GMT -04:00)

Seminar: Aging and Domain Growth in the Spin Glass Copper Manganese

Daniel Tennant - University of Texas, Austin

I will report on dynamical magnetic susceptibility measurements of
both bulk and thin film samples of the spin glass Copper Manganese.
By studying the Thermoremanent Magnetization (TRM) of multi-layer thin
films of various thicknesses, we are able to show the maximum energy
barrier encountered during correlated spin flip transitions is cut off
by the thickness of the film and is independent of temperature. The
distribution of energy barriers is shown to follow from a hierarchical

Thursday, September 28, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Application of a resource theory for magic states to fault-tolerant quantum computing

Mark Howard & Earl T. Campbell

Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. We first show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states.

Wednesday, October 11, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Toward the first quantum simulation with quantum speedup

Neil Julien Ross, Dalhousie University

As we approach the development of a quantum computer with tens of
well-controlled qubits, it is natural to ask what can be done with
such a device. Specifically, we would like to construct an example of
a practical problem that is beyond the reach of classical computers,
but that requires the fewest possible resources to solve on a quantum
computer. We address this problem by considering quantum simulation of
spin systems, a task that could be applied to understand phenomena in

Monday, October 16, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Search for a toric code topological order in the kagome antiferromagnet

Jiawei Mei - Southern University of Science and Technology, China

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It also represents the simplest example of topological order -- Z2 topological order that was first studied in the context of Z2 spin liquid. I will talk about our recent progress in the search for a toric code topological order in the kagome antiferromagnetic spin system.

Thursday, October 19, 2017 12:00 pm - 12:00 pm EDT (GMT -04:00)

CryptoWorks21 - Intellectual Property: What is it and Why Should I Care?

Back by popular demand, CryptoWorks21 will once again launch the Intellectual Property (IP) Management Lunch and Learn Lecture Series! Our knowledgeable speakers will provide more in-depth presentation built from the previous sessions.

The lectures are designed for researchers working in areas related to information technology, including cryptography and quantum technology.